(1−x2)dxdy−x2y=(1+x)1−x2
y′−1−x2x2y=(1−x2)(1+x)1−x2
Let
y=uv⇒y′=u′v+uv′
Then
u′v+uv′−1−x2x2uv=(1−x2)(1+x)1−x2
u′v+u(v′−1−x2x2v)=(1−x2)(1+x)1−x2
Let
v′−1−x2x2v=0⇒dxdv=1−x2x2v⇒vdv=1−x2x2dx=(2(x+1)1−2(x−1)1−1)dx⇒lnv=21ln(x+1)−21ln(1−x)−x⇒lnv=ln1−x1+x−x⇒v=eln1−xx+1−x=e−x1−xx+1
Then
u′e−x1−xx+1=(1−x2)(1+x)1−x2⇒u′=ex(1−x2)(1+x)1−x2x+11−x=ex(1−x)(1−x)(1+x)x+11−x=ex⇒u=ex+C
Then
y=uv=(ex+C)e−x1−xx+1=1−xx+1+Ce−x1−xx+1
Answer: y=1−xx+1+Ce−x1−xx+1
Comments