Question #241166
(1-x^ 2 )dy/dx-x^ 2 y=(1+x)* sqrt (1- x^ 2 )
1
Expert's answer
2021-09-27T16:28:46-0400

(1x2)dydxx2y=(1+x)1x2\left( {1 - {x^2}} \right)\frac{{dy}}{{dx}} - {x^2}y = \left( {1 + x} \right)\sqrt {1 - {x^2}}

yx21x2y=(1+x)1x2(1x2)y' - \frac{{{x^2}}}{{1 - {x^2}}}y = \frac{{\left( {1 + x} \right)\sqrt {1 - {x^2}} }}{{\left( {1 - {x^2}} \right)}}

Let

y=uvy=uv+uvy = uv \Rightarrow y' = u'v + uv'

Then

uv+uvx21x2uv=(1+x)1x2(1x2)u'v + uv' - \frac{{{x^2}}}{{1 - {x^2}}}uv = \frac{{\left( {1 + x} \right)\sqrt {1 - {x^2}} }}{{\left( {1 - {x^2}} \right)}}

uv+u(vx21x2v)=(1+x)1x2(1x2)u'v + u\left( {v' - \frac{{{x^2}}}{{1 - {x^2}}}v} \right) = \frac{{\left( {1 + x} \right)\sqrt {1 - {x^2}} }}{{\left( {1 - {x^2}} \right)}}

Let

vx21x2v=0dvdx=x21x2vdvv=x21x2dx=(12(x+1)12(x1)1)dxlnv=12ln(x+1)12ln(1x)xlnv=ln1+x1xxv=elnx+11xx=exx+11xv' - \frac{{{x^2}}}{{1 - {x^2}}}v = 0 \Rightarrow \frac{{dv}}{{dx}} = \frac{{{x^2}}}{{1 - {x^2}}}v \Rightarrow \frac{{dv}}{v} = \frac{{{x^2}}}{{1 - {x^2}}}dx = \left( {\frac{1}{{2(x + 1)}} - \frac{1}{{2(x - 1)}} - 1} \right)dx \Rightarrow \ln v = \frac{1}{2}\ln (x + 1) - \frac{1}{2}\ln (1 - x) - x \Rightarrow \ln v = \ln \sqrt {\frac{{1 + x}}{{1 - x}}} - x \Rightarrow v = {e^{\ln \sqrt {\frac{{x + 1}}{{1 - x}}} - x}} = {e^{ - x}}\sqrt {\frac{{x + 1}}{{1 - x}}}

Then

uexx+11x=(1+x)1x2(1x2)u=ex(1+x)1x2(1x2)1xx+1=ex(1x)(1+x)(1x)1xx+1=exu=ex+Cu'{e^{ - x}}\sqrt {\frac{{x + 1}}{{1 - x}}} = \frac{{\left( {1 + x} \right)\sqrt {1 - {x^2}} }}{{\left( {1 - {x^2}} \right)}} \Rightarrow u' = {e^x}\frac{{(1 + x)\sqrt {1 - {x^2}} }}{{\left( {1 - {x^2}} \right)}}\sqrt {\frac{{1 - x}}{{x + 1}}} = {e^x}\frac{{\sqrt {(1 - x)(1 + x)} }}{{\left( {1 - x} \right)}}\sqrt {\frac{{1 - x}}{{x + 1}}} = {e^x} \Rightarrow u = {e^x} + C

Then

y=uv=(ex+C)exx+11x=x+11x+Cexx+11xy = uv = \left( {{e^x} + C} \right){e^{ - x}}\sqrt {\frac{{x + 1}}{{1 - x}}} = \sqrt {\frac{{x + 1}}{{1 - x}}} + C{e^{ - x}}\sqrt {\frac{{x + 1}}{{1 - x}}}

Answer: y=x+11x+Cexx+11xy = \sqrt {\frac{{x + 1}}{{1 - x}}} + C{e^{ - x}}\sqrt {\frac{{x + 1}}{{1 - x}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS