(yet+tyet)y′=et+tet(ye^{t}+tye^{t})'_y=e^{t}+te^{t}(yet+tyet)y′=et+tet
(tet+2)t′=et+tet(te^t+2)'_t=e^{t}+te^{t}(tet+2)t′=et+tet
(yet+tyet)y′=(tet+2)t′(ye^{t}+tye^{t})'_y=(te^t+2)'_t(yet+tyet)y′=(tet+2)t′
So, the equation is exact .
∂F∂t=yet+tyet\frac{\partial F}{\partial t}=ye^{t}+tye^{t}∂t∂F=yet+tyet
∂F∂y=tet+2\frac{\partial F}{\partial y}=te^t+2∂y∂F=tet+2
F=∫(yet+tyet)dt=yet+tyet−yet+ϕ(y)=tyet+ϕ(y)F=\int (ye^{t}+tye^{t})dt=ye^t+tye^t-ye^t+\phi(y)=tye^t+\phi(y)F=∫(yet+tyet)dt=yet+tyet−yet+ϕ(y)=tyet+ϕ(y)
∂F∂y=tet+ϕ′(y)=tet+2\frac{\partial F}{\partial y}=te^t+\phi'(y)=te^t+2∂y∂F=tet+ϕ′(y)=tet+2
ϕ′(y)=tet+2\phi'(y)=te^t+2ϕ′(y)=tet+2
ϕ(y)=∫(tet+2)dy=tyet+2y+c\phi(y)=\int (te^t+2)dy=tye^t+2y+cϕ(y)=∫(tet+2)dy=tyet+2y+c
F=2tyet+2y+cF=2tye^t+2y+cF=2tyet+2y+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments