Question #241162
Determine whether the equation is exact . If it is , then solve it . (e ^ t * y + t * e ^ t * y) * d * t + (t * e ^ t + 2) * d * y = 0 .
1
Expert's answer
2021-09-28T10:33:28-0400

(yet+tyet)y=et+tet(ye^{t}+tye^{t})'_y=e^{t}+te^{t}

(tet+2)t=et+tet(te^t+2)'_t=e^{t}+te^{t}


(yet+tyet)y=(tet+2)t(ye^{t}+tye^{t})'_y=(te^t+2)'_t

So, the equation is exact .


Ft=yet+tyet\frac{\partial F}{\partial t}=ye^{t}+tye^{t}


Fy=tet+2\frac{\partial F}{\partial y}=te^t+2


F=(yet+tyet)dt=yet+tyetyet+ϕ(y)=tyet+ϕ(y)F=\int (ye^{t}+tye^{t})dt=ye^t+tye^t-ye^t+\phi(y)=tye^t+\phi(y)


Fy=tet+ϕ(y)=tet+2\frac{\partial F}{\partial y}=te^t+\phi'(y)=te^t+2


ϕ(y)=tet+2\phi'(y)=te^t+2


ϕ(y)=(tet+2)dy=tyet+2y+c\phi(y)=\int (te^t+2)dy=tye^t+2y+c


F=2tyet+2y+cF=2tye^t+2y+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS