Solve (X^2-y^2-Z^2)p+2xyq=2xz
Solution:-
By arranging we get
"(y^2+z^2-x^2)p-2xyq+2xz=0\\\\ \\frac{dx}{y^2+z^2-x^2}=\\frac{dy}{-2xy}=\\frac{dz}{-2xz}\\\\ \\frac{dy}{-2xy}=\\frac{dz}{-2xz}\\\\ \\frac{dy}{y}=\\frac{dz}{z}\\\\ \\log y=\\log z+\\log C_1\\\\ C_1=\\frac{y}{z}\\\\ \\text{each fraction}=\\frac{xdx+ydy+zdz}{x(y^2+z^2-x^2)-2xy^2-2xz^2}=\\\\ =\\frac{xdx+ydy+zdz}{-x(y^2+z^2+x^2)}\\\\ \\frac{xdx+ydy+zdz}{-x(y^2+z^2+x^2)}=\\frac{dy}{-2xy}\\\\ \\frac{2xdx+2ydy+2zdz}{y^2+z^2+x^2}=\\frac{dy}{y}\\\\ \\log (y^2+z^2+x^2)=\\log y+\\log C_2\\\\ C_2=\\frac{y^2+z^2+x^2}{y}\\\\ f(C_1, C_2)=0\\\\"
"f(\\frac{y}{2}, \\frac{y^2+z^2+x^2}{y})=0"
Comments
Leave a comment