Answer to Question #206775 in Differential Equations for Praveen

Question #206775

Solve (X^2-y^2-Z^2)p+2xyq=2xz


1
Expert's answer
2021-06-15T09:10:28-0400

Solution:-

By arranging we get

"(y^2+z^2-x^2)p-2xyq+2xz=0\\\\ \\frac{dx}{y^2+z^2-x^2}=\\frac{dy}{-2xy}=\\frac{dz}{-2xz}\\\\ \\frac{dy}{-2xy}=\\frac{dz}{-2xz}\\\\ \\frac{dy}{y}=\\frac{dz}{z}\\\\ \\log y=\\log z+\\log C_1\\\\ C_1=\\frac{y}{z}\\\\ \\text{each fraction}=\\frac{xdx+ydy+zdz}{x(y^2+z^2-x^2)-2xy^2-2xz^2}=\\\\ =\\frac{xdx+ydy+zdz}{-x(y^2+z^2+x^2)}\\\\ \\frac{xdx+ydy+zdz}{-x(y^2+z^2+x^2)}=\\frac{dy}{-2xy}\\\\ \\frac{2xdx+2ydy+2zdz}{y^2+z^2+x^2}=\\frac{dy}{y}\\\\ \\log (y^2+z^2+x^2)=\\log y+\\log C_2\\\\ C_2=\\frac{y^2+z^2+x^2}{y}\\\\ f(C_1, C_2)=0\\\\"

"f(\\frac{y}{2}, \\frac{y^2+z^2+x^2}{y})=0"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS