Solution:-
By arranging we get
(y2+z2−x2)p−2xyq+2xz=0y2+z2−x2dx=−2xydy=−2xzdz−2xydy=−2xzdzydy=zdzlogy=logz+logC1C1=zyeach fraction=x(y2+z2−x2)−2xy2−2xz2xdx+ydy+zdz==−x(y2+z2+x2)xdx+ydy+zdz−x(y2+z2+x2)xdx+ydy+zdz=−2xydyy2+z2+x22xdx+2ydy+2zdz=ydylog(y2+z2+x2)=logy+logC2C2=yy2+z2+x2f(C1,C2)=0
f(2y,yy2+z2+x2)=0
Comments