Question #206337

9y''-4y=sinx


1
Expert's answer
2021-07-16T11:15:25-0400

Сharacteristic equation:

9k24=09{k^2} - 4 = 0

k2=49{k^2} = \frac{4}{9}

k=±23k = \pm \frac{2}{3}

Then the general solution of the homogeneous equation is

y0=C1e23x+C2e23x{y_0} = {C_1}{e^{\frac{2}{3}x}} + {C_2}{e^{ - \frac{2}{3}x}}

We will seek a particular solution in the form

y~=Asinx+Bcosxy~=AcosxBsinxy~=AsinxBcosx\widetilde y = A\sin x + B\cos x \Rightarrow {\widetilde y^\prime } = A\cos x - B\sin x \Rightarrow {\widetilde y^{\prime \prime }} = - A\sin x - B\cos x

Substitute the obtained values ​​into the original equation:

9Asinx9Bcosx4Asinx4Bcosx=sinx- 9A\sin x - 9B\cos x - 4A\sin x - 4B\cos x = \sin x

{13A=113B=0A=113,B=0\left\{ \begin{array}{l} - 13A = 1\\ - 13B = 0 \end{array} \right. \Rightarrow A = - \frac{1}{{13}},\,B = 0

So,

y~=113sinx\widetilde y = - \frac{1}{{13}}\sin x

y=y0+y=C1e23x+C2e23x113sinxy = {y_0} + y = {C_1}{e^{\frac{2}{3}x}} + {C_2}{e^{ - \frac{2}{3}x}} - \frac{1}{{13}}\sin x

Answer: y=C1e23x+C2e23x113sinxy = {C_1}{e^{\frac{2}{3}x}} + {C_2}{e^{ - \frac{2}{3}x}} - \frac{1}{{13}}\sin x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS