Answer to Question #206337 in Differential Equations for Usama Rehman

Question #206337

9y''-4y=sinx


1
Expert's answer
2021-07-16T11:15:25-0400

Сharacteristic equation:

"9{k^2} - 4 = 0"

"{k^2} = \\frac{4}{9}"

"k = \\pm \\frac{2}{3}"

Then the general solution of the homogeneous equation is

"{y_0} = {C_1}{e^{\\frac{2}{3}x}} + {C_2}{e^{ - \\frac{2}{3}x}}"

We will seek a particular solution in the form

"\\widetilde y = A\\sin x + B\\cos x \\Rightarrow {\\widetilde y^\\prime } = A\\cos x - B\\sin x \\Rightarrow {\\widetilde y^{\\prime \\prime }} = - A\\sin x - B\\cos x"

Substitute the obtained values ​​into the original equation:

"- 9A\\sin x - 9B\\cos x - 4A\\sin x - 4B\\cos x = \\sin x"

"\\left\\{ \\begin{array}{l}\n - 13A = 1\\\\\n - 13B = 0\n\\end{array} \\right. \\Rightarrow A = - \\frac{1}{{13}},\\,B = 0"

So,

"\\widetilde y = - \\frac{1}{{13}}\\sin x"

"y = {y_0} + y = {C_1}{e^{\\frac{2}{3}x}} + {C_2}{e^{ - \\frac{2}{3}x}} - \\frac{1}{{13}}\\sin x"

Answer: "y = {C_1}{e^{\\frac{2}{3}x}} + {C_2}{e^{ - \\frac{2}{3}x}} - \\frac{1}{{13}}\\sin x"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS