Сharacteristic equation:
9k2−4=0
k2=94
k=±32
Then the general solution of the homogeneous equation is
y0=C1e32x+C2e−32x
We will seek a particular solution in the form
y=Asinx+Bcosx⇒y′=Acosx−Bsinx⇒y′′=−Asinx−Bcosx
Substitute the obtained values into the original equation:
−9Asinx−9Bcosx−4Asinx−4Bcosx=sinx
{−13A=1−13B=0⇒A=−131,B=0
So,
y=−131sinx
y=y0+y=C1e32x+C2e−32x−131sinx
Answer: y=C1e32x+C2e−32x−131sinx
Comments