9y''-4y=sinx
Сharacteristic equation:
"9{k^2} - 4 = 0"
"{k^2} = \\frac{4}{9}"
"k = \\pm \\frac{2}{3}"
Then the general solution of the homogeneous equation is
"{y_0} = {C_1}{e^{\\frac{2}{3}x}} + {C_2}{e^{ - \\frac{2}{3}x}}"
We will seek a particular solution in the form
"\\widetilde y = A\\sin x + B\\cos x \\Rightarrow {\\widetilde y^\\prime } = A\\cos x - B\\sin x \\Rightarrow {\\widetilde y^{\\prime \\prime }} = - A\\sin x - B\\cos x"
Substitute the obtained values into the original equation:
"- 9A\\sin x - 9B\\cos x - 4A\\sin x - 4B\\cos x = \\sin x"
"\\left\\{ \\begin{array}{l}\n - 13A = 1\\\\\n - 13B = 0\n\\end{array} \\right. \\Rightarrow A = - \\frac{1}{{13}},\\,B = 0"
So,
"\\widetilde y = - \\frac{1}{{13}}\\sin x"
"y = {y_0} + y = {C_1}{e^{\\frac{2}{3}x}} + {C_2}{e^{ - \\frac{2}{3}x}} - \\frac{1}{{13}}\\sin x"
Answer: "y = {C_1}{e^{\\frac{2}{3}x}} + {C_2}{e^{ - \\frac{2}{3}x}} - \\frac{1}{{13}}\\sin x"
Comments
Leave a comment