f(y−zx−y,xy+yz+zx)=0let u=y−zx−y,v=xy+yz+zxTherefore,f(u,v)=0ux=y−z1,uy=(y−z)2−y+z−xq−yq,vx=x+p,vy=x+qNow,fx=fu.ux+fv.vx=00=fu.(y−z1)+fv.(x+p)fu.(y−z1)=−fv.(x+p)−−−−−(1)fy=fu.uy+fv.vy=00=fu.((y−z)2−y+z−xq−yq)+fv.(x+q)fu.((y−z)2−y+z−xq−yq)=−fv.(x+q)−−(2)Divide equation 1 by 2, we get,(y−z)2−y+z−xq−yqy−z1=x+qx+p⟹−y+z−xq−yqy−z=x+qx+pThis is the required solution.
Comments