Question #205782

Form the PDE by eliminating the arbitrary function from 𝑓 ( 𝑥−𝑦 𝑦−𝑧 , 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) = 0.


1
Expert's answer
2021-06-15T13:46:47-0400

𝑓(xyyz,𝑥𝑦+𝑦𝑧+𝑧𝑥)=0let u=xyyz,v=𝑥𝑦+𝑦𝑧+𝑧𝑥Therefore,f(u,v)=0ux=1yz,uy=y+zxqyq(yz)2,vx=x+p,vy=x+qNow,fx=fu.ux+fv.vx=00=fu.(1yz)+fv.(x+p)fu.(1yz)=fv.(x+p)(1)fy=fu.uy+fv.vy=00=fu.(y+zxqyq(yz)2)+fv.(x+q)fu.(y+zxqyq(yz)2)=fv.(x+q)(2)Divide equation 1 by 2, we get,1yzy+zxqyq(yz)2=x+px+q    yzy+zxqyq=x+px+qThis is the required solution.𝑓 ( \frac{x-y}{y-z}, 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) = 0\\ let\space u=\frac{x-y}{y-z}, v=𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥\\ Therefore, f(u,v)=0\\ u_x=\frac{1}{y-z}, \\u_y=\frac{-y+z-xq-yq}{(y-z)^2},\\ v_x=x+p,\\v_y=x+q\\ Now,\\ f_x=f_u.u_x+f_v.v_x=0\\ 0=f_u.(\frac{1}{y-z}) +f_v.(x+p)\\ f_u.(\frac{1}{y-z})=-f_v.(x+p) -----(1)\\ f_y=f_u.u_y+f_v.v_y=0\\ 0=f_u.(\frac{-y+z-xq-yq}{(y-z)^2}) +f_v.(x+q)\\ f_u.(\frac{-y+z-xq-yq}{(y-z)^2})=-f_v.(x+q)--(2) \\ \text{Divide equation 1 by 2, we get,}\\ \frac{\frac{1}{y-z}}{\frac{-y+z-xq-yq}{(y-z)^2}}=\frac{x+p}{x+q}\\ \implies \frac{y-z}{-y+z-xq-yq }=\frac{x+p}{x+q}\\ \text{This is the required solution.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS