The displacement y(x,t) is given by the equation δt2δ2y=a2δx2δ2y−−−−−−−−−−−(1)The suitable solution of (1) is given by :y(x,t)=(Acoslx+Bsinlx)(Ccoslat+Dsinlat)−−−−−−(2)The boundary conditions are:(i) y(0,t)=0,fort≥0(ii) y(ℓ,t)=0,fort≥0.(iii) y(x,0)=0∀0<x<i(i v) [δtδy]t=0=g(x)={lCxlC(2l−x)0<x<ll<x<2lUsing (i)and (ii)in (2),we get :0=A(Ccoslat+Dsinlat),forallt≥0.Therefore, A=0Hence equation (2) becomes :y(x,t)=Bsinlx(Ccoslat+Dsinlat)−−−−−−−−−−(3)Using (ii) in (3), we get :
0=Bsinlℓ(Ccoslat+Dsinlat),∀t≥0, which gives lℓ=nπHence, l=ℓnπ,n being an integer. Thus y(x,t)=Bsinlnπx[Ccoslnπat+Dsinlnπat]−−−−−−−−−(4)Using (iii) in (4), we get 0=BsinlnπxCTherefore, C=0Hence y(x,t)=Bsinlnπx⋅Dsinlnπat=B1sinlnπx⋅DsinlnπatWhere B1=BDThe most general solution is :y(x,t)=n=1∑∞Bnsinlnπx⋅sinlnπat−−−−−−−(5)Differentiating (5) partially w.r.t t, we get δtδy=n=1∑∞Bnsinlnπxcoslnπat⋅lnπa Using condition (iv) in the above equation, we get: yt(x,0)=g(x)={lCxl2l−x0<x<ll<x<2lTaking lCx,0<x<lwe get: lCx=∑n=1∞Bnlnπa⋅sinlnπxi.eBnlnπa=l2∫01f(x)⋅sinlnπxdxi.eBn=nπa2∫01f(x)⋅sinlnπxdx=nπa2∫01lCx⋅sinlnπxdx=nπa2∫01lCxd[TπT−cos1nπz]=nπa2{lCxd[Tππ−coslnπ]−lC[ln2π2−sin2nπ]}=nπa2{13n3π3−2cosnπ+2}=nπa2⋅n3π32l3{1−cosnπ}i.eBn=n4π4a4l3{1−(−1)n}or Bn={l8l30 if n is odd if n is even ∴ solution is:y(x,t)=n4a8l3∑n=1∞(2n−1)41sinl(2n−1)πatsinl(2n−1)πx,∀0<x<l−−−>AnswerTaking lC(2l−x),l<x<2l we get:
l2Cl−Cx=∑n=1∞Bn2lnπa⋅sin2lnπxi.eBnlnπa=l2∫l2lg(x)⋅sin2lnπxdxi.eBn=nπa2∫l2lg(x)⋅sin2lnπxdx=nπa2∫l2ll2Cl−Cx⋅sin2lnπxdx=nπa2∫l2ll2Cl−Cxd[2lnπx−cos2nπx]=nπa2{l2Cl−Cxd[2nπ−cos2nπz]−l2Cl−C[22n2π2−sin2ππ]}=nπa2{4!3n3π3−2cosnπ+2}=nπa2⋅n3π38l3{1−cosnπ}i.eBn=n4π4a16l3{1−(−1)n}orBn={l32l30 if n is odd if n is even ∴ solution is :y(x,t)=n4a32l3∑n=1∞(2n−1)41sinl(2n−1)πatsinl(2n−1)πx,∀l<x<2l−−−>Answer
Comments