Answer to Question #205551 in Differential Equations for Kumar Aditya

Question #205551

 A string is stretched and fastened to two points “” a part and the points of the string are given 

   initial velocity v, v =. Find the displacement at a distance at time.


1
Expert's answer
2021-06-15T16:03:18-0400

"\\text{ The displacement }\\mathrm{y}(\\mathrm{x}, \\mathrm{t}) \\text{ is given by the equation }\\\\\n\\frac{\\delta^{2} y}{\\delta t^{2}}=a^{2} \\frac{\\delta^{2} y}{\\delta x^{2}}-----------(1)\\\\\n\\text{The suitable solution of }(1) \\text{ is given by :}\\\\\ny(x, t)=( Acoslx + Bsinlx )( Ccoslat + Dsinlat )------(2)\\\\\n\\text{}\\\\\n\\text{The boundary conditions are:}\\\\\n\\text{(i) } y(0, t)=0, for t \\geq 0\\\\\n\n\\text{(ii) } y(\\ell, t)=0, for t \\geq 0 .\\\\\n\n\\text{(iii) }y(x, 0)=0 \\forall 0<x<i\\\\\n\n\\text{(i v) }\\left[\\frac{\\delta y}{\\delta t}\\right]_{t=0}=g(x)=\\left\\{\\begin{array}{ll}\\frac{C x}{l} & 0<x<l \\\\ \\frac{C(2 l-x)}{l} & l<x<2 l\\end{array}\\right.\\\\\n\\text{}\\\\\n\\text{Using }(i) \\text{and }(ii) \\text{in }(2), \\text{we get :}\\\\\n0=A( Ccoslat +D sinlat ), for all t \\geq 0 .\\\\\n\\text{Therefore, }\\quad A=0\\\\\n\\text{Hence equation (2) becomes :}\\\\\ny(x, t)=B sinlx ( Ccoslat + Dsinlat )----------(3)\\\\\n\\text{} \\\\\n\\text{Using (ii) in (3), we get :}"


"0=B sinl\\ell ( Ccoslat +D sinlat ), \\forall t \\geq 0, \\text{ which gives } l \\ell=n \\pi\\\\\n\\text{Hence, }l=\\frac{n \\pi}{\\ell}, n \\text{ being an integer. }\\\\\n\\text{Thus }\\\\\ny(x, t)=B \\sin \\frac{n \\pi x}{l}\\left[C \\cos \\frac{n \\pi a t}{l}+D \\sin \\frac{n \\pi a t}{l}\\right]---------(4)\\\\\n\\text{Using (iii) in (4), we get }\\\\\n0=B \\sin \\frac{n \\pi x}{l} C\\\\\n\\text{Therefore, }C=0\\\\\n\\text{Hence }y(x, t)=B \\sin \\frac{n \\pi x}{l} \\cdot D \\sin \\frac{n \\pi a t}{l}=B_{1} \\sin \\frac{n \\pi x}{l} \\cdot D \\sin \\frac{n \\pi a t}{l}\\\\\n\\text{Where }B_{1}=B D\\\\\n\\text{The most general solution is :}\\\\\ny(x, t)=\\sum_{n=1}^{\\infty} B_{n} \\sin \\frac{n \\pi x}{l} \\cdot \\sin \\frac{n \\pi a t}{l}-------(5)\\\\\n\\text{Differentiating (5) partially w.r.t t, we get }\\\\\n\\frac{\\delta y}{\\delta t}=\\sum_{n=1}^{\\infty} B_{n} \\sin \\frac{n \\pi x}{l} \\cos \\frac{n \\pi a t}{l} \\cdot \\frac{n \\pi a}{l}\\\\\n\\text{}\\\\\n\\text{ Using condition (iv) in the above equation, we get: }"

"y_{t}(x, 0)=g(x)=\\left\\{\\begin{array}{ll}\\frac{C_{x}}{l} & 0<x<l \\\\ \\frac{2 l-x}{l} & l<x<2 l\\end{array}\\right.\\\\\n\\text{Taking }\\frac{C x}{l}, 0<x<l \\text{we get: }\\\\\n\\frac{C x}{l}=\\sum_{n=1}^{\\infty} B_{n} \\frac{n \\pi a}{l} \\cdot \\sin \\frac{n \\pi x}{l}\\\\\ni.e B_{n} \\frac{n \\pi a}{l}=\\frac{2}{l} \\int_{0}^{1} f(x) \\cdot \\sin \\frac{n \\pi x}{l} d x\\\\\ni.e B_{n}=\\frac{2}{n \\pi a} \\int_{0}^{1} f(x) \\cdot \\sin \\frac{n \\pi x}{l} d x=\\frac{2}{n \\pi a} \\int_{0}^{1} \\frac{C x}{l} \\cdot \\sin \\frac{n \\pi x}{l} d x=\\frac{2}{n \\pi a} \\int_{0}^{1} \\frac{C x}{l} d\\left[\\frac{-\\cos \\frac{n \\pi z}{1}}{\\frac{\\pi T}{T}}\\right]\\\\\n=\\frac{2}{n \\pi a}\\left\\{\\frac{C x}{l} d\\left[\\frac{-\\cos \\frac{n \\pi}{l}}{\\frac{\\pi \\pi}{T}}\\right]-\\frac{C}{l}\\left[\\frac{-\\sin \\frac{n \\pi}{2}}{\\frac{n^{2} \\pi^{2}}{l}}\\right]\\right\\}=\\frac{2}{n \\pi a}\\left\\{\\frac{-2 \\cos n \\pi+2}{\\frac{n^{3} \\pi^{3}}{1^{3}}}\\right\\}=\\frac{2}{n \\pi a} \\cdot \\frac{2 l^{3}}{n^{3} \\pi^{3}}\\{1-\\cos n \\pi\\}\\\\\ni.e B_{n}=\\frac{4 l^{3}}{n^{4} \\pi^{4} a}\\left\\{1-(-1)^{n}\\right\\}\\\\\n\\text{or }\nB_{n}=\\left\\{\\begin{array}{ll}\\frac{8 l^{3}}{l} & \\text { if } n \\text { is odd } \\\\ 0 & \\text { if } n \\text { is even }\\end{array}\\right.\\\\\n\\therefore \\text{ solution is:}\\\\\ny(x, t)=\\frac{8 l^{3}}{n^{4} a} \\sum_{n=1}^{\\infty} \\frac{1}{(2 n-1)^{4}} \\sin \\frac{(2 n-1) \\pi a t}{l} \\sin \\frac{(2 n-1) \\pi x}{l}, \\forall 0<x<l---> \\bold{Answer}\\\\\n\\text{Taking } \\frac{C(2 l-x)}{l}, l<x<2 l \\text{ we get:}"

"\\frac{2 C l-C x}{l}=\\sum_{n=1}^{\\infty} B_{n} \\frac{n \\pi a}{2 l} \\cdot \\sin \\frac{n \\pi x}{2 l}\\\\\ni.e B_{n} \\frac{n \\pi a}{l}=\\frac{2}{l} \\int_{l}^{2 l} g(x) \\cdot \\sin \\frac{n \\pi x}{2 l} d x\\\\\ni.e B_{n}=\\frac{2}{n \\pi a} \\int_{l}^{2 l} g(x) \\cdot \\sin \\frac{n \\pi x}{2 l} d x=\\frac{2}{n \\pi a} \\int_{l}^{2 l} \\frac{2 C l-C x}{l} \\cdot \\sin \\frac{n \\pi x}{2 l} d x=\\\\\n\\frac{2}{n \\pi a} \\int_{l}^{2 l} \\frac{2 C l-C x}{l} d\\left[\\frac{-\\cos \\frac{n \\pi x}{2}}{\\frac{n \\pi x}{2 l}}\\right]\\\\\n=\\frac{2}{n \\pi a}\\left\\{\\frac{2 C l-C x}{l} d\\left[\\frac{-\\cos \\frac{n \\pi z}{2}}{\\frac{n \\pi}{2}}\\right]-\\frac{2 C l-C}{l}\\left[\\frac{-\\sin \\frac{\\pi \\pi}{2}}{\\frac{n^{2} \\pi 2}{22}}\\right]\\right\\}=\\frac{2}{n \\pi a}\\left\\{\\frac{-2 \\cos n \\pi+2}{\\frac{n^{3} \\pi^{3}}{4 !^{3}}}\\right\\}=\\frac{2}{n \\pi a} \\cdot \\frac{8 l^{3}}{n^{3} \\pi^{3}}\\{1-\n\\cos n \\pi\\}\\\\\ni.e B_{n}=\\frac{16 l^{3}}{n^{4} \\pi^{4} a}\\left\\{1-(-1)^{n}\\right\\}\\\\\nor\\\\\nB_{n}=\\left\\{\\begin{array}{ll}\\frac{32 l^{3}}{l} & \\text { if } n \\text { is odd } \\\\ 0 & \\text { if } n \\text { is even }\\end{array}\\right.\\\\\n\\therefore \\text{ solution is :}\\\\\ny(x, t)=\\frac{32 l^{3}}{n^{4} a} \\sum_{n=1}^{\\infty} \\frac{1}{(2 n-1)^{4}} \\sin \\frac{(2 n-1) \\pi a t}{l} \\sin \\frac{(2 n-1) \\pi x}{l}, \\forall l<x<2 l--->\nAnswer"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS