Answer to Question #205554 in Differential Equations for Devansh

Question #205554

(D2-3DD'+2D'2)=e2x-y+ex+y

1
Expert's answer
2021-08-02T13:40:59-0400

Answer:-

 :-I will assume that on the right side of the equation it looks like this




"\\left(D^2-3DD'+2D'^2\\right)z=e^{2x-y}+e^{x+y}"

This is an inhomogeneous equation, so its solution consists of two parts




"z(x,y)=(C.F.)+(P.I.)\\\\[0.3cm]\n(C.F.)-\\text{Complementary Function of Homogeneous Linear PDE}\\\\[0.3cm]\n(P.I.)-\\text{Particular Integral}"

1 STEP : We try to find "(C.F.)"

As we know, the equation




"\\boxed{\\left(D-mD'\\right)z=0\\to z(x,y)=\\phi(y+mx)}\\\\[0.3cm]\n\\phi(y+mx)\\,\\text{is an arbitrary function}"

In our case,




"\\left(D^2-3DD'+2D'^2\\right)z=\\left(D^2-DD'-2DD'+2D'^2\\right)z=\\\\[0.3cm]\n=\\left(D\\left(D-D'\\right)-2D'\\left(D-D'\\right)\\right)z=\\\\[0.3cm]\n=\\left(D-D'\\right)\\left(D-2D'\\right)z\\\\[0.3cm]\n\\left(D-D'\\right)\\left(D-2D'\\right)z=0\\longrightarrow\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\n\\left(D-1D'\\right)z=0\\to z(x,y)=\\phi_1(y+x)\\\\[0.3cm]\n\\left(D-2D'\\right)z=0\\to z(x,y)=\\phi_2(y+2x)\n\\end{array}\\right."

Conclusion,




"\\boxed{(C.F.)=\\phi_1(y+x)+\\phi_2(y+2x)}\\\\[0.3cm]\n\\phi_1,\\phi_2\\,\\text{are arbitrary functions}"

2 STEP : We try to find "(P.I.)"

As we know




"f\\left(D,D'\\right)z=F(x,y)\\to(P.I.)=\\frac{1}{f\\left(D,D'\\right)}F(x,y)\\\\[0.3cm]\n\\text{special case :}\\,\\,\\,\\frac{1}{f\\left(D,D'\\right)}e^{ax+by}=\\frac{e^{ax+by}}{f(a,b)},\\,\\,\\,f(a,b)\\neq0\\\\[0.3cm]\nif\\,\\,\\,f(a,b)=0 : (P.I.)=x\\cdot\\frac{1}{f'\\left(D,D'\\right)}\\cdot e^{ax+by},\\\\[0.3cm]\nf'\\left(D,D'\\right)\\text{ is the partial derivative of}\\,\\,\\,f\\left(D,D'\\right)\\,\\,\\,\\text{ w.r.t D}"

In our case,




"\\left(D^2-3DD'+2D'^2\\right)z=\\underbrace{e^{2x-y}}_{(P.I.)_1}+\\underbrace{e^{x+y}}_{(P.I.)_2}\\\\[0.3cm]\n(P.I.)_1 : \\left(D^2-3DD'+2D'^2\\right)z=e^{2x-y}\\to\\\\[0.3cm]\n(P.I.)_1=\\frac{1}{\\left(D^2-3DD'+2D'^2\\right)}\\cdot e^{2x-y}=\\frac{e^{2x-y}}{2^2-3\\cdot2\\cdot(-1)+2(-1)^2}=\\\\[0.3cm]\n=\\frac{e^{2x-y}}{4+6+2}=\\frac{e^{2x-y}}{12}\\to\\boxed{(P.I.)_1=\\frac{e^{2x-y}}{12}}\\\\[0.3cm]\n(P.I.)_2=\\frac{1}{\\left(D^2-3DD'+2D'^2\\right)}\\cdot e^{x+y}=x\\cdot\\frac{1}{2D-3D'}\\cdot e^{x+y}=\\\\[0.3cm]\n=\\frac{x\\cdot e^{x+y}}{2-3}=-x\\cdot e^{x+y}\\to\\boxed{(P.I.)_2=-x\\cdot e^{x+y}}"

General conclusion.




"\\left(D^2-3DD'+2D'^2\\right)z=e^{2x-y}+e^{x+y}\\to\\\\[0.3cm]\nz(x,y)=(C.F.)+(P.I.)_1+(P.I.)_2\\\\[0.3cm]\n\\boxed{z(x,y)=\\phi_1(y+x)+\\phi_2(y+2x)+\\frac{e^{2x-y}}{12}-x\\cdot e^{x+y}}\\\\[0.3cm]\n\\phi_1,\\phi_2\\,\\text{are arbitrary functions}"

ANSWER




"z(x,y)=\\phi_1(y+x)+\\phi_2(y+2x)+\\frac{e^{2x-y}}{12}-x\\cdot e^{x+y}\\\\[0.3cm]\n\\phi_1,\\phi_2\\,\\text{are arbitrary functions}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS