Answer to Question #205554 in Differential Equations for Devansh

Question #205554

(D2-3DD'+2D'2)=e2x-y+ex+y

1
Expert's answer
2021-08-02T13:40:59-0400

Answer:-

 :-I will assume that on the right side of the equation it looks like this




(D23DD+2D2)z=e2xy+ex+y\left(D^2-3DD'+2D'^2\right)z=e^{2x-y}+e^{x+y}

This is an inhomogeneous equation, so its solution consists of two parts




z(x,y)=(C.F.)+(P.I.)(C.F.)Complementary Function of Homogeneous Linear PDE(P.I.)Particular Integralz(x,y)=(C.F.)+(P.I.)\\[0.3cm] (C.F.)-\text{Complementary Function of Homogeneous Linear PDE}\\[0.3cm] (P.I.)-\text{Particular Integral}

1 STEP : We try to find (C.F.)(C.F.)

As we know, the equation




(DmD)z=0z(x,y)=ϕ(y+mx)ϕ(y+mx)is an arbitrary function\boxed{\left(D-mD'\right)z=0\to z(x,y)=\phi(y+mx)}\\[0.3cm] \phi(y+mx)\,\text{is an arbitrary function}

In our case,




(D23DD+2D2)z=(D2DD2DD+2D2)z==(D(DD)2D(DD))z==(DD)(D2D)z(DD)(D2D)z=0{(D1D)z=0z(x,y)=ϕ1(y+x)(D2D)z=0z(x,y)=ϕ2(y+2x)\left(D^2-3DD'+2D'^2\right)z=\left(D^2-DD'-2DD'+2D'^2\right)z=\\[0.3cm] =\left(D\left(D-D'\right)-2D'\left(D-D'\right)\right)z=\\[0.3cm] =\left(D-D'\right)\left(D-2D'\right)z\\[0.3cm] \left(D-D'\right)\left(D-2D'\right)z=0\longrightarrow\\[0.3cm] \left\{\begin{array}{l} \left(D-1D'\right)z=0\to z(x,y)=\phi_1(y+x)\\[0.3cm] \left(D-2D'\right)z=0\to z(x,y)=\phi_2(y+2x) \end{array}\right.

Conclusion,




(C.F.)=ϕ1(y+x)+ϕ2(y+2x)ϕ1,ϕ2are arbitrary functions\boxed{(C.F.)=\phi_1(y+x)+\phi_2(y+2x)}\\[0.3cm] \phi_1,\phi_2\,\text{are arbitrary functions}

2 STEP : We try to find (P.I.)(P.I.)

As we know




f(D,D)z=F(x,y)(P.I.)=1f(D,D)F(x,y)special case :   1f(D,D)eax+by=eax+byf(a,b),   f(a,b)0if   f(a,b)=0:(P.I.)=x1f(D,D)eax+by,f(D,D) is the partial derivative of   f(D,D)    w.r.t Df\left(D,D'\right)z=F(x,y)\to(P.I.)=\frac{1}{f\left(D,D'\right)}F(x,y)\\[0.3cm] \text{special case :}\,\,\,\frac{1}{f\left(D,D'\right)}e^{ax+by}=\frac{e^{ax+by}}{f(a,b)},\,\,\,f(a,b)\neq0\\[0.3cm] if\,\,\,f(a,b)=0 : (P.I.)=x\cdot\frac{1}{f'\left(D,D'\right)}\cdot e^{ax+by},\\[0.3cm] f'\left(D,D'\right)\text{ is the partial derivative of}\,\,\,f\left(D,D'\right)\,\,\,\text{ w.r.t D}

In our case,




(D23DD+2D2)z=e2xy(P.I.)1+ex+y(P.I.)2(P.I.)1:(D23DD+2D2)z=e2xy(P.I.)1=1(D23DD+2D2)e2xy=e2xy2232(1)+2(1)2==e2xy4+6+2=e2xy12(P.I.)1=e2xy12(P.I.)2=1(D23DD+2D2)ex+y=x12D3Dex+y==xex+y23=xex+y(P.I.)2=xex+y\left(D^2-3DD'+2D'^2\right)z=\underbrace{e^{2x-y}}_{(P.I.)_1}+\underbrace{e^{x+y}}_{(P.I.)_2}\\[0.3cm] (P.I.)_1 : \left(D^2-3DD'+2D'^2\right)z=e^{2x-y}\to\\[0.3cm] (P.I.)_1=\frac{1}{\left(D^2-3DD'+2D'^2\right)}\cdot e^{2x-y}=\frac{e^{2x-y}}{2^2-3\cdot2\cdot(-1)+2(-1)^2}=\\[0.3cm] =\frac{e^{2x-y}}{4+6+2}=\frac{e^{2x-y}}{12}\to\boxed{(P.I.)_1=\frac{e^{2x-y}}{12}}\\[0.3cm] (P.I.)_2=\frac{1}{\left(D^2-3DD'+2D'^2\right)}\cdot e^{x+y}=x\cdot\frac{1}{2D-3D'}\cdot e^{x+y}=\\[0.3cm] =\frac{x\cdot e^{x+y}}{2-3}=-x\cdot e^{x+y}\to\boxed{(P.I.)_2=-x\cdot e^{x+y}}

General conclusion.




(D23DD+2D2)z=e2xy+ex+yz(x,y)=(C.F.)+(P.I.)1+(P.I.)2z(x,y)=ϕ1(y+x)+ϕ2(y+2x)+e2xy12xex+yϕ1,ϕ2are arbitrary functions\left(D^2-3DD'+2D'^2\right)z=e^{2x-y}+e^{x+y}\to\\[0.3cm] z(x,y)=(C.F.)+(P.I.)_1+(P.I.)_2\\[0.3cm] \boxed{z(x,y)=\phi_1(y+x)+\phi_2(y+2x)+\frac{e^{2x-y}}{12}-x\cdot e^{x+y}}\\[0.3cm] \phi_1,\phi_2\,\text{are arbitrary functions}

ANSWER




z(x,y)=ϕ1(y+x)+ϕ2(y+2x)+e2xy12xex+yϕ1,ϕ2are arbitrary functionsz(x,y)=\phi_1(y+x)+\phi_2(y+2x)+\frac{e^{2x-y}}{12}-x\cdot e^{x+y}\\[0.3cm] \phi_1,\phi_2\,\text{are arbitrary functions}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment