Answer to Question #205359 in Differential Equations for Kate Bishop

Question #205359

The rate of change of x is proportional to x. When t=0, x(0) =3, and when t=2, x=6. What js the value of x when t=4?


1
Expert's answer
2021-06-11T03:04:36-0400

"Question :-\n\\\\\nThe \\space rate \\space of \\space change \\space of \\space x \\space is \\space proportional \\space to \\space x.\\\\ When \\\\\\space t=0, x(0) =3,\\\\ and \\\\when \\\\t=2, x(2)=6.\\\\\n What \\space the \\space value \\space of \\space x \\space when \\space t=4?\n\n\\\\\n-----------------------------------\\\\Solution:-\n\\\\given\\\\\nThe \\space rate \\space of \\space change \\space of \\space x \\space is \\space proportional \\space to \\space x.\\\\\nhence \\\\\n\\implies \\frac{dx}{dt} \\propto x\\\\\n\\implies \\frac{dx}{dt} = k. x\\\\\n\\implies \\frac{dx}{x} = k.dt\\\\\nintegration \\space both \\space side \\\\\n\\implies log(x)=k.t+ c\\\\\n\\implies x=e^{k.t+ c}\\\\\nnow \\space \\\\\nuse \\space first\\space condition\n\\\\\nWhen \\\\\\space t=0, x(0) =3,\\\\ \nhence\\\\\n\\implies 3=e^{k.0+ c}\\\\\n\\implies 3=e^{c}\\\\\n\\implies c=log(3)\\\\\nnow \\space \\\\\nuse \\space second \\space condition\n\\\\\nWhen \\\\\\space t=2, x(2) =6,\\\\ \nhence\\\\\n\\implies 6=e^{k.2 +log(3)}\\\\\n\\implies6=e^{k.2 }.3\\\\\n\\implies 2=e^{k.2}\\\\\n\\implies log(2)={k.2}\\\\\n\\implies 0.3010={k.2}\\\\\n\\implies k=0.1505\\\\\nhence \\\\\n\\implies x=e^{k.t+ c}\\\\and \\space k=0.1505, c=log(3)\\\\\nhence\\\\\n\\implies x=e^{0.1505.t}.3\\\\\nnow \\space we \\space find \\space the \\space value \\space of \\space x \\space when \\space t=4?\\\\\n\\implies x=e^{0.1505.*4}.3\\\\\n\\implies x=5.477"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS