Question #205359

The rate of change of x is proportional to x. When t=0, x(0) =3, and when t=2, x=6. What js the value of x when t=4?


1
Expert's answer
2021-06-11T03:04:36-0400

Question:The rate of change of x is proportional to x.When t=0,x(0)=3,andwhent=2,x(2)=6.What the value of x when t=4?Solution:givenThe rate of change of x is proportional to x.hence    dxdtx    dxdt=k.x    dxx=k.dtintegration both side    log(x)=k.t+c    x=ek.t+cnow use first conditionWhen t=0,x(0)=3,hence    3=ek.0+c    3=ec    c=log(3)now use second conditionWhen t=2,x(2)=6,hence    6=ek.2+log(3)    6=ek.2.3    2=ek.2    log(2)=k.2    0.3010=k.2    k=0.1505hence    x=ek.t+cand k=0.1505,c=log(3)hence    x=e0.1505.t.3now we find the value of x when t=4?    x=e0.1505.4.3    x=5.477Question :- \\ The \space rate \space of \space change \space of \space x \space is \space proportional \space to \space x.\\ When \\\space t=0, x(0) =3,\\ and \\when \\t=2, x(2)=6.\\ What \space the \space value \space of \space x \space when \space t=4? \\ -----------------------------------\\Solution:- \\given\\ The \space rate \space of \space change \space of \space x \space is \space proportional \space to \space x.\\ hence \\ \implies \frac{dx}{dt} \propto x\\ \implies \frac{dx}{dt} = k. x\\ \implies \frac{dx}{x} = k.dt\\ integration \space both \space side \\ \implies log(x)=k.t+ c\\ \implies x=e^{k.t+ c}\\ now \space \\ use \space first\space condition \\ When \\\space t=0, x(0) =3,\\ hence\\ \implies 3=e^{k.0+ c}\\ \implies 3=e^{c}\\ \implies c=log(3)\\ now \space \\ use \space second \space condition \\ When \\\space t=2, x(2) =6,\\ hence\\ \implies 6=e^{k.2 +log(3)}\\ \implies6=e^{k.2 }.3\\ \implies 2=e^{k.2}\\ \implies log(2)={k.2}\\ \implies 0.3010={k.2}\\ \implies k=0.1505\\ hence \\ \implies x=e^{k.t+ c}\\and \space k=0.1505, c=log(3)\\ hence\\ \implies x=e^{0.1505.t}.3\\ now \space we \space find \space the \space value \space of \space x \space when \space t=4?\\ \implies x=e^{0.1505.*4}.3\\ \implies x=5.477


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS