Solve the following equation.
dx/y-xz=dy/yz+x=dz/x^2+y^2
dxy−xz=dyyz+x=dzx2+y2\frac{dx}{y-xz}=\frac{dy}{yz+x}=\frac{dz}{x^2+y^2}y−xzdx=yz+xdy=x2+y2dz
xdxx(y−xz)=ydyy(yz+x)=dzx2+y2\frac{xdx}{x(y-xz)}=\frac{ydy}{y(yz+x)}=\frac{dz}{x^2+y^2}x(y−xz)xdx=y(yz+x)ydy=x2+y2dz
xdx−ydy−z(x2+y2)=dzx2+y2\frac{xdx-ydy}{-z(x^2+y^2)}=\frac{dz}{x^2+y^2}−z(x2+y2)xdx−ydy=x2+y2dz
x2−y2+z2=c1x^2-y^2+z^2=c_1x2−y2+z2=c1
ydx+xdyx2+y2=dzx2+y2\frac{ydx+xdy}{x^2+y^2}=\frac{dz}{x^2+y^2}x2+y2ydx+xdy=x2+y2dz
xy−z=c2xy-z=c_2xy−z=c2
General solution:
F(x2−y2+z2,xy−z)=0F(x^2-y^2+z^2,xy-z)=0F(x2−y2+z2,xy−z)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments