Question #205178

Solve the following equation.

dx/y-xz=dy/yz+x=dz/x^2+y^2


1
Expert's answer
2021-06-15T04:36:53-0400

dxyxz=dyyz+x=dzx2+y2\frac{dx}{y-xz}=\frac{dy}{yz+x}=\frac{dz}{x^2+y^2}


xdxx(yxz)=ydyy(yz+x)=dzx2+y2\frac{xdx}{x(y-xz)}=\frac{ydy}{y(yz+x)}=\frac{dz}{x^2+y^2}


xdxydyz(x2+y2)=dzx2+y2\frac{xdx-ydy}{-z(x^2+y^2)}=\frac{dz}{x^2+y^2}


x2y2+z2=c1x^2-y^2+z^2=c_1


ydx+xdyx2+y2=dzx2+y2\frac{ydx+xdy}{x^2+y^2}=\frac{dz}{x^2+y^2}


xyz=c2xy-z=c_2


General solution:

F(x2y2+z2,xyz)=0F(x^2-y^2+z^2,xy-z)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS