Solve the following equation.
dx/y-xz=dy/yz+x=dz/x^2+y^2
"\\frac{dx}{y-xz}=\\frac{dy}{yz+x}=\\frac{dz}{x^2+y^2}"
"\\frac{xdx}{x(y-xz)}=\\frac{ydy}{y(yz+x)}=\\frac{dz}{x^2+y^2}"
"\\frac{xdx-ydy}{-z(x^2+y^2)}=\\frac{dz}{x^2+y^2}"
"x^2-y^2+z^2=c_1"
"\\frac{ydx+xdy}{x^2+y^2}=\\frac{dz}{x^2+y^2}"
"xy-z=c_2"
General solution:
"F(x^2-y^2+z^2,xy-z)=0"
Comments
Leave a comment