(𝑡 +2)^2 𝑦′′ + (𝑡+2) 𝑦′ + 𝑦=0
(t+2)2y′′+(t+2)y′+y=0y=f(ln(t+2))=f(x)y′=f′(ln(t+2))t+2y′′=f′′(ln(t+2))(t+2)2−f′(ln(t+2))(t+2)2f′′(ln(t+2))−f′(ln(t+2))+f′(ln(t+2))+f(ln(t+2))=0f′′(ln(t+2))+f(ln(t+2))=0f′′(x)+f(x)=0f(x)=c1cosx+c2sinxf(x)=c1cos(ln(t+2))+c2sin(ln(t+2))\displaystyle (t + 2)^2 y'' + (t + 2)y' + y = 0\\ y = f(\ln(t + 2)) = f(x)\\ y' = \frac{f'(\ln(t + 2))}{t + 2} \\ y'' = \frac{f''(\ln(t + 2))}{(t + 2)^2} - \frac{f'(\ln(t + 2))}{(t + 2)^2}\\ f''(\ln(t + 2)) - f'(\ln(t + 2)) + f'(\ln(t + 2)) + f(\ln(t + 2)) = 0\\ f''(\ln(t + 2)) + f(\ln(t + 2)) = 0\\ f''(x) + f(x) = 0\\ f(x) = c_1\cos{x} + c_2\sin{x}\\ f(x) = c_1\cos(\ln(t + 2)) + c_2\sin(\ln(t + 2))(t+2)2y′′+(t+2)y′+y=0y=f(ln(t+2))=f(x)y′=t+2f′(ln(t+2))y′′=(t+2)2f′′(ln(t+2))−(t+2)2f′(ln(t+2))f′′(ln(t+2))−f′(ln(t+2))+f′(ln(t+2))+f(ln(t+2))=0f′′(ln(t+2))+f(ln(t+2))=0f′′(x)+f(x)=0f(x)=c1cosx+c2sinxf(x)=c1cos(ln(t+2))+c2sin(ln(t+2))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments