(π‘ +2)^2 π¦β²β² + (π‘+2) π¦β² + π¦=0
"\\displaystyle\n(t + 2)^2 y'' + (t + 2)y' + y = 0\\\\\n\ny = f(\\ln(t + 2)) = f(x)\\\\\n\ny' = \\frac{f'(\\ln(t + 2))}{t + 2} \\\\\n\ny'' = \\frac{f''(\\ln(t + 2))}{(t + 2)^2} - \\frac{f'(\\ln(t + 2))}{(t + 2)^2}\\\\\n\nf''(\\ln(t + 2)) - f'(\\ln(t + 2)) + f'(\\ln(t + 2)) + f(\\ln(t + 2)) = 0\\\\\n\nf''(\\ln(t + 2)) + f(\\ln(t + 2)) = 0\\\\\n\nf''(x) + f(x) = 0\\\\\n\n\nf(x) = c_1\\cos{x} + c_2\\sin{x}\\\\\n\nf(x) = c_1\\cos(\\ln(t + 2)) + c_2\\sin(\\ln(t + 2))"
Comments
Leave a comment