Question #204148

y′′−8y′+16y=24x+2


1
Expert's answer
2021-06-16T06:20:41-0400

Homogeneous differential equation,

y′′−8y′+16y=0

Auxiliary equation,

m2-8m+16=0

(m-4)2=0

m=4,4 (repeated roots)

Therefore, solution is y=(a+bx)e4x.

Now, particular solution is given by,

yp=1(D4)224x+2=116[1D4]2(24x+2)=116[1+D2+3D216+•••](24x+2)=116[24x+2+12]=116[24x+14]=12x+78y_p=\frac{1}{(D-4)^2}24x+2\\ =\frac{1}{16}[1-\frac{D}{4}]^{-2}(24x+2)\\ =\frac{1}{16}[1+\frac{D}{2}+3\frac{D^2}{16}+••• ](24x+2)\\ =\frac{1}{16}[24x+2+12]\\ =\frac{1}{16}[24x+14]\\ =\frac{12x+7}{8}

Thus, solution is y=(a+bx)e4x+12x+78y=(a+bx)e^{4x}+\frac{12x+7}{8}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS