y′′−8y′+16y=24x+2
Homogeneous differential equation,
y′′−8y′+16y=0
Auxiliary equation,
m2-8m+16=0
(m-4)2=0
m=4,4 (repeated roots)
Therefore, solution is y=(a+bx)e4x.
Now, particular solution is given by,
"y_p=\\frac{1}{(D-4)^2}24x+2\\\\\n=\\frac{1}{16}[1-\\frac{D}{4}]^{-2}(24x+2)\\\\\n=\\frac{1}{16}[1+\\frac{D}{2}+3\\frac{D^2}{16}+\u2022\u2022\u2022\n](24x+2)\\\\\n=\\frac{1}{16}[24x+2+12]\\\\\n=\\frac{1}{16}[24x+14]\\\\\n=\\frac{12x+7}{8}"
Thus, solution is "y=(a+bx)e^{4x}+\\frac{12x+7}{8}"
Comments
Leave a comment