Homogeneous differential equation,
y′′−8y′+16y=0
Auxiliary equation,
m2-8m+16=0
(m-4)2=0
m=4,4 (repeated roots)
Therefore, solution is y=(a+bx)e4x.
Now, particular solution is given by,
yp=(D−4)2124x+2=161[1−4D]−2(24x+2)=161[1+2D+316D2+•••](24x+2)=161[24x+2+12]=161[24x+14]=812x+7
Thus, solution is y=(a+bx)e4x+812x+7
Comments