HOMOGENEOUS EQUATION
Solve the given equation below. Show complete solution.
xy' = x + y
Ans:-
"xy'=x+y"
"\\dfrac{dy}{dx}=\\dfrac{x+y}{x}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ ...1"
Solving "\\dfrac{dy}{dx}" by putting "\\ \\ y=vx"
differentiating w. r. t. x
"\\dfrac{dy}{dx}=x\\dfrac{dv}{dx}+v\\dfrac{dx}{dx}"
"\\dfrac{dy}{dx}=x\\dfrac{dv}{dx}+v"
Putting value of "\\dfrac{dy}{dx}" and y=vx in (1)
"\\dfrac{dy}{dx}=\\dfrac{x+y}{x}"
"x\\dfrac{dv}{dx}+v=\\dfrac{x+vx}{x}\\\\"
"x\\dfrac{dv}{dx}+v=1+v\\\\"
"\\dfrac{dv}{dx}=\\dfrac{1}{x}"
Integrating both sides
"\\int dv=\\int \\dfrac{dx}{x}"
"v=log|x| +c"
putting "v=\\dfrac{y}{x}"
"\\dfrac{y}{x}=log|x| +c"
"y=xlog|x|+cx"
Comments
Leave a comment