y''-x2y'-2xy=0;y(0)=1&y'(0)=0 solve by reduction of order
"\\text{We can re-write the equation as: }\\\\\n\\frac{d^{2} y(x)}{d x^{2}}-x^{2} \\frac{d y(x)}{d x}-2 x y(x)=0, \\text{ such that }y(0)=1 \\text{ and } y^{\\prime}(0)=0\\\\\n\n\\text{We solve as follows: }\\\\\n\\text{Substitute }-2 x=\\frac{d}{d x}\\left(-x^{2}\\right) :\\\\\n\\frac{d^{2} y(x)}{d x^{2}}-x^{2} \\frac{d y(x)}{d x}+\\frac{d}{d x}\\left(-x^{2}\\right) y(x)=0\\\\\n\\text{Apply the reverse product rule }f \\frac{d g}{d x}+g \\frac{d f}{d x}=\\frac{d}{d x}(f g)\\text{ to the left-hand side and simplify:}\\\\\n\\frac{d}{d x}\\left(\\frac{d y(x)}{d x}\\right)+\\frac{d}{d x}\\left(-x^{2} y(x)\\right)=0\\\\\n\\text{Factor: }\\\\\n\\frac{d}{d x}\\left(\\frac{d y(x)}{d x}-x^{2} y(x)\\right)=0\\\\\n\\text{Integrate both sides with respect to }x :\\\\\n\\int \\frac{d}{d x}\\left(\\frac{d y(x)}{d x}-x^{2} y(x)\\right) d x=\\int 0 d x\\\\\n\\text{Evaluate the integrals: }\\\\\n\\frac{d y(x)}{d x}-x^{2} y(x)=c_{1}, \\qquad \\qquad \\cdots (i)\\\\\n(\\text{ where }c_{1}\\text{ is an arbitrary constant.})"
"\\text{Let }\\mu(x)=e^{\\int-x^{2} d x}=e^{-x^{3} \/ 3}.\\\\\n\\text{Multiply both sides by } \\mu(x) :\\\\\ne^{-x^{3} \/ 3} \\frac{d y(x)}{d x}-\\left(e^{-x^{3} \/ 3} x^{2}\\right) y(x)=c_{1} e^{-x^{3} \/ 3}\\\\\n\\text{Substitute }-e^{-x^{3} \/ 3} x^{2}=\\frac{d}{d x}\\left(e^{-x^{3} \/ 3}\\right):\\\\\ne^{-x^{3} \/ 3} \\frac{d y(x)}{d x}+\\frac{d}{d x}\\left(e^{-x^{3} \/ 3}\\right) y(x)=c_{1} e^{-x^{3} \/ 3}\\\\\n\\text{Apply the reverse product rule }f \\frac{d g}{d x}+g \\frac{d f}{d x}=\\frac{d}{d x}(f g) \\text{ to the left-hand side:}\\\\\n\\frac{d}{d x}\\left(e^{-x^{3} \/ 3} y(x)\\right)=c_{1} e^{-x^{3} \/ 3}\\\\\n\\text{Integrate both sides with respect to }x :\\\\\n\\int \\frac{d}{d x}\\left(e^{-x^{3} \/ 3} y(x)\\right) d x=\\int c_{1} e^{-x^{3} \/ 3} d x\\\\\n\\text{Evaluate the integrals:}\\\\\ne^{-x^{3} \/ 3} y(x)=-\\frac{c_{1} x \\Gamma\\left(\\frac{1}{3}, \\frac{x^{3}}{3}\\right)}{3^{2 \/ 3} \\sqrt[3]{x^{3}}}+c_{2}, \\text{ where }c_{2} \\text{ is an arbitrary constant.}"
"\\text{Divide both sides by }\\mu(x)=e^{-x^{3} \/ 3} :\\\\\ny(x)=e^{x^{3} \/ 3}\\left(-\\frac{c_{1} x \\Gamma\\left(\\frac{1}{3}, \\frac{x^{3}}{3}\\right)}{3^{2 \/ 3} \\sqrt[3]{x^{3}}}+c_{2}\\right)\\\\\n\\text{Simplify the arbitrary constants:}\\\\\n\n\\text{The general solution to the differential equation is:}\\\\\ny(x)=e^{x^{3} \/ 3}\\left(\\frac{c_{1} x \\Gamma\\left(\\frac{1}{3}, \\frac{x^{3}}{3}\\right)}{\\sqrt[3]{x^{3}}}+c_{2}\\right) \\qquad \\cdots (ii)"
Evaluating the differential equation at y(0) = 1 and y'(0) =0.
From (i) above:,
"\\frac{d y(x)}{d x}-x^{2} y(x)=c_{1}\\\\\n0-0(1)=0=c_1"From (ii):
Therefore, the solution to the given equation at the initial conditions given is:
Comments
Leave a comment