Question #203681

2) Solve the following system

𝑑𝑥

𝑑𝑡

= 𝑥 + 𝑦

𝑑𝑦

𝑑𝑡

= −2𝑥 − 𝑦 


1
Expert's answer
2021-06-08T09:36:34-0400
dxdt=x+y\dfrac{dx}{dt}=x+y

dydt=2xy\dfrac{dy}{dt}=-2x-y

The first equation of the system is equivalent to 

y=dxdtxy=\frac{dx}{dt}-x

Then 

dydt=d2xdt2dxdt\frac{dy}{dt}=\frac{d^2x}{dt^2}-\frac{dx}{dt}

Put these in the second equation of the system. We have the following differential equation:


d2xdt2dxdt=2xdxdt+x\frac{d^2x}{dt^2}-\frac{dx}{dt}=-2x-\frac{dx}{dt}+x


which is equivalent to


d2xdt2+x=0\frac{d^2x}{dt^2}+x=0



Its characteristic equation k2+1=0.k^2+1=0. 


Therefore, x(t)=C1sint+C2costx(t)=C_1\sin t+C_2\cos t.

Then 

dxdt=C1costC2sint\frac{dx}{dt}=C_1\cos t-C_2\sin t

 and


y=dxdtxy=\frac{dx}{dt}-x

=C1costC2sintC1sintC2cost=C_1\cos t-C_2\sin t-C_1\sin t-C_2\cos t

 .Consequently, the system has the general solution:


{x(t)=C1sint+C2costy(t)=(C1C2)sint+(C1C2))cost\begin{cases} x(t)=C_1\sin t+C_2\cos t\\ y(t)=(-C_1-C_2)\sin t+(C_1-C_2))\cos t \end{cases}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS