Question #203679

1) Find the half range Fourier cosine and sine series for

𝑓(𝑤) = 1 − 𝑤; 0 < 𝑤 < 1


1
Expert's answer
2021-06-08T11:53:22-0400

The Fourier series of the half range even function is given by:


f(w)=a02+∑n=1∞ancos⁥(nĪ€w1)f(w)=\dfrac{a_0}{2}+\displaystyle\sum_{n=1}^\infin a_n\cos (\dfrac{n\pi w}{1})

a0=21âˆĢ01(1−w)dw=2[w−w22]10=1a_0=\dfrac{2}{1}\displaystyle\int_{0}^{1}(1-w)dw=2[w-\dfrac{w^2}{2}]\begin{matrix} 1 \\ 0 \end{matrix}=1

an=21âˆĢ01(1−w)cos⁥(nĪ€w1)dwa_n=\dfrac{2}{1}\displaystyle\int_{0}^{1}(1-w)\cos (\dfrac{n\pi w}{1})dw

âˆĢcos⁥(nĪ€w)dw=1nĪ€sin⁥(nĪ€w)+C1\int \cos(n\pi w)dw=\dfrac{1}{n\pi}\sin(n\pi w)+C_1

âˆĢwcos⁥(nĪ€w)dw\int w\cos(n\pi w)dw

=1nĪ€wsin⁥(nĪ€w)−1nĪ€âˆĢsin⁥(nĪ€w)dw=\dfrac{1}{n\pi}w\sin(n\pi w)-\dfrac{1}{n\pi}\int\sin(n\pi w)dw

=1nĪ€wsin⁥(nĪ€w)+1n2Ī€2cos⁥(nĪ€w)+C2=\dfrac{1}{n\pi}w\sin(n\pi w)+\dfrac{1}{n^2\pi^2}\cos(n\pi w)+C_2

an=2âˆĢ01(1−w)cos⁥(nĪ€w)dwa_n=2\displaystyle\int_{0}^{1}(1-w)\cos (n\pi w)dw

=2[1nĪ€sin⁥(nĪ€w)−1nĪ€wsin⁥(nĪ€w)]10=2[\dfrac{1}{n\pi}\sin(n\pi w)-\dfrac{1}{n\pi}w\sin(n\pi w)]\begin{matrix} 1 \\ 0 \end{matrix}

−2[1n2Ī€2cos⁥(nĪ€w))]10=4(2k+1)2Ī€2-2[\dfrac{1}{n^2\pi^2}\cos(n\pi w))]\begin{matrix} 1 \\ 0 \end{matrix}=\dfrac{4}{(2k+1)^2\pi^2}

bn=0b_n=0


f(w)=12+∑k=0∞4(2k+1)2Ī€2cos⁥((2k+1)Ī€w)f(w)=\dfrac{1}{2}+\displaystyle\sum_{k=0}^\infin \dfrac{4}{(2k+1)^2\pi^2}\cos ((2k+1)\pi w)



The Fourier series of the half range odd function is given by:


f(w)=∑n=1∞bnsin⁥(nĪ€w1)f(w)=\displaystyle\sum_{n=1}^\infin b_n\sin (\dfrac{n\pi w}{1})

bn=21âˆĢ01(1−w)sin⁥(nĪ€w1)dwb_n=\dfrac{2}{1}\displaystyle\int_{0}^{1}(1-w)\sin (\dfrac{n\pi w}{1})dw

âˆĢsin⁥(nĪ€w)dw=−1nĪ€cos⁥(nĪ€w)+C1\int \sin(n\pi w)dw=-\dfrac{1}{n\pi}\cos(n\pi w)+C_1

âˆĢwsin⁥(nĪ€w)dw\int w\sin(n\pi w)dw=−1nĪ€wcos⁥(nĪ€w)+1nĪ€âˆĢcos⁥(nĪ€w)dw=-\dfrac{1}{n\pi}w\cos(n\pi w)+\dfrac{1}{n\pi}\int\cos(n\pi w)dw

=−1nĪ€wcos⁥(nĪ€w)+1n2Ī€2sin⁥(nĪ€w)+C2=-\dfrac{1}{n\pi}w\cos(n\pi w)+\dfrac{1}{n^2\pi^2}\sin(n\pi w)+C_2

bn=2âˆĢ01(1−w)sin⁥(nĪ€w)dwb_n=2\displaystyle\int_{0}^{1}(1-w)\sin (n\pi w)dw

=2[−1nĪ€cos⁥(nĪ€w)+1nĪ€wcos⁥(nĪ€w)]10=2[-\dfrac{1}{n\pi}\cos(n\pi w)+\dfrac{1}{n\pi}w\cos(n\pi w)]\begin{matrix} 1 \\ 0 \end{matrix}

−2[1n2Ī€2sin⁥(nĪ€w))]10=2nĪ€-2[\dfrac{1}{n^2\pi^2}\sin(n\pi w))]\begin{matrix} 1 \\ 0 \end{matrix}=\dfrac{2}{n\pi}


f(w)=∑n=1∞2nĪ€sin⁥(nĪ€w)f(w)=\displaystyle\sum_{n=1}^\infin\dfrac{2}{n\pi}\sin (n\pi w)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS