1) Find the half range Fourier cosine and sine series for
š(š¤) = 1 ā š¤; 0 < š¤ < 1
The Fourier series of theĀ half range even functionĀ is given by:
"a_0=\\dfrac{2}{1}\\displaystyle\\int_{0}^{1}(1-w)dw=2[w-\\dfrac{w^2}{2}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=1"
"a_n=\\dfrac{2}{1}\\displaystyle\\int_{0}^{1}(1-w)\\cos (\\dfrac{n\\pi w}{1})dw"
"\\int \\cos(n\\pi w)dw=\\dfrac{1}{n\\pi}\\sin(n\\pi w)+C_1"
"\\int w\\cos(n\\pi w)dw"
"=\\dfrac{1}{n\\pi}w\\sin(n\\pi w)-\\dfrac{1}{n\\pi}\\int\\sin(n\\pi w)dw"
"=\\dfrac{1}{n\\pi}w\\sin(n\\pi w)+\\dfrac{1}{n^2\\pi^2}\\cos(n\\pi w)+C_2"
"a_n=2\\displaystyle\\int_{0}^{1}(1-w)\\cos (n\\pi w)dw"
"=2[\\dfrac{1}{n\\pi}\\sin(n\\pi w)-\\dfrac{1}{n\\pi}w\\sin(n\\pi w)]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"-2[\\dfrac{1}{n^2\\pi^2}\\cos(n\\pi w))]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{4}{(2k+1)^2\\pi^2}"
"b_n=0"
The Fourier series of theĀ half range odd functionĀ is given by:
"b_n=\\dfrac{2}{1}\\displaystyle\\int_{0}^{1}(1-w)\\sin (\\dfrac{n\\pi w}{1})dw"
"\\int \\sin(n\\pi w)dw=-\\dfrac{1}{n\\pi}\\cos(n\\pi w)+C_1"
"\\int w\\sin(n\\pi w)dw""=-\\dfrac{1}{n\\pi}w\\cos(n\\pi w)+\\dfrac{1}{n\\pi}\\int\\cos(n\\pi w)dw"
"=-\\dfrac{1}{n\\pi}w\\cos(n\\pi w)+\\dfrac{1}{n^2\\pi^2}\\sin(n\\pi w)+C_2"
"b_n=2\\displaystyle\\int_{0}^{1}(1-w)\\sin (n\\pi w)dw"
"=2[-\\dfrac{1}{n\\pi}\\cos(n\\pi w)+\\dfrac{1}{n\\pi}w\\cos(n\\pi w)]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"-2[\\dfrac{1}{n^2\\pi^2}\\sin(n\\pi w))]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{2}{n\\pi}"
Comments
Leave a comment