Answer to Question #203679 in Differential Equations for rahimah

Question #203679

1) Find the half range Fourier cosine and sine series for

š‘“(š‘¤) = 1 āˆ’ š‘¤; 0 < š‘¤ < 1


1
Expert's answer
2021-06-08T11:53:22-0400

The Fourier series of theĀ half range even functionĀ is given by:


"f(w)=\\dfrac{a_0}{2}+\\displaystyle\\sum_{n=1}^\\infin a_n\\cos (\\dfrac{n\\pi w}{1})"

"a_0=\\dfrac{2}{1}\\displaystyle\\int_{0}^{1}(1-w)dw=2[w-\\dfrac{w^2}{2}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=1"

"a_n=\\dfrac{2}{1}\\displaystyle\\int_{0}^{1}(1-w)\\cos (\\dfrac{n\\pi w}{1})dw"

"\\int \\cos(n\\pi w)dw=\\dfrac{1}{n\\pi}\\sin(n\\pi w)+C_1"

"\\int w\\cos(n\\pi w)dw"

"=\\dfrac{1}{n\\pi}w\\sin(n\\pi w)-\\dfrac{1}{n\\pi}\\int\\sin(n\\pi w)dw"

"=\\dfrac{1}{n\\pi}w\\sin(n\\pi w)+\\dfrac{1}{n^2\\pi^2}\\cos(n\\pi w)+C_2"

"a_n=2\\displaystyle\\int_{0}^{1}(1-w)\\cos (n\\pi w)dw"

"=2[\\dfrac{1}{n\\pi}\\sin(n\\pi w)-\\dfrac{1}{n\\pi}w\\sin(n\\pi w)]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"

"-2[\\dfrac{1}{n^2\\pi^2}\\cos(n\\pi w))]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{4}{(2k+1)^2\\pi^2}"

"b_n=0"


"f(w)=\\dfrac{1}{2}+\\displaystyle\\sum_{k=0}^\\infin \\dfrac{4}{(2k+1)^2\\pi^2}\\cos ((2k+1)\\pi w)"



The Fourier series of theĀ half range odd functionĀ is given by:


"f(w)=\\displaystyle\\sum_{n=1}^\\infin b_n\\sin (\\dfrac{n\\pi w}{1})"

"b_n=\\dfrac{2}{1}\\displaystyle\\int_{0}^{1}(1-w)\\sin (\\dfrac{n\\pi w}{1})dw"

"\\int \\sin(n\\pi w)dw=-\\dfrac{1}{n\\pi}\\cos(n\\pi w)+C_1"

"\\int w\\sin(n\\pi w)dw""=-\\dfrac{1}{n\\pi}w\\cos(n\\pi w)+\\dfrac{1}{n\\pi}\\int\\cos(n\\pi w)dw"

"=-\\dfrac{1}{n\\pi}w\\cos(n\\pi w)+\\dfrac{1}{n^2\\pi^2}\\sin(n\\pi w)+C_2"

"b_n=2\\displaystyle\\int_{0}^{1}(1-w)\\sin (n\\pi w)dw"

"=2[-\\dfrac{1}{n\\pi}\\cos(n\\pi w)+\\dfrac{1}{n\\pi}w\\cos(n\\pi w)]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"

"-2[\\dfrac{1}{n^2\\pi^2}\\sin(n\\pi w))]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{2}{n\\pi}"


"f(w)=\\displaystyle\\sum_{n=1}^\\infin\\dfrac{2}{n\\pi}\\sin (n\\pi w)"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS