Find the value of b for which the equation
(ye^2xy+x)dx +bxe^ 2xy dy= 0
Let us find the value of "b" for which the equation "(ye^{2xy}+x)dx +bxe^{2xy} dy= 0" is an exact differential equation. Since "\\frac{\\partial(ye^{2xy}+x)}{\\partial y}=e^{2xy}+2xye^{2xy}" and "\\frac{\\partial(bxe^{2xy})}{\\partial x}=be^{2xy}+2bxye^{2xy}", we conclude that "\\frac{\\partial(ye^{2xy}+x)}{\\partial y}=\\frac{\\partial(bxe^{2xy})}{\\partial x}" implies "e^{2xy}+2xye^{2xy}=be^{2xy}+2bxye^{2xy}", and hence "b=1."
Answer: "b=1."
Comments
Leave a comment