Question #204550

Find the value of b for which the equation

(ye^2xy+x)dx +bxe^ 2xy dy= 0



1
Expert's answer
2021-06-09T08:23:56-0400

Let us find the value of bb for which the equation (ye2xy+x)dx+bxe2xydy=0(ye^{2xy}+x)dx +bxe^{2xy} dy= 0 is an exact differential equation. Since (ye2xy+x)y=e2xy+2xye2xy\frac{\partial(ye^{2xy}+x)}{\partial y}=e^{2xy}+2xye^{2xy} and (bxe2xy)x=be2xy+2bxye2xy\frac{\partial(bxe^{2xy})}{\partial x}=be^{2xy}+2bxye^{2xy}, we conclude that (ye2xy+x)y=(bxe2xy)x\frac{\partial(ye^{2xy}+x)}{\partial y}=\frac{\partial(bxe^{2xy})}{\partial x} implies e2xy+2xye2xy=be2xy+2bxye2xye^{2xy}+2xye^{2xy}=be^{2xy}+2bxye^{2xy}, and hence b=1.b=1.

Answer: b=1.b=1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS