Question #204369

1.  dy/dt + ty=y ; y(1)=3


1
Expert's answer
2021-06-08T14:23:10-0400
dydt=y(1t)\dfrac{dy}{dt}=y(1-t)

dyy=(1t)dt\dfrac{dy}{y}=(1-t)dt

dyy=(1t)dt\int\dfrac{dy}{y}=\int(1-t)dt

lny=(tt22)+lnC\ln |y|=(t-\dfrac{t^2}{2})+\ln C

y(t)=Ce(tt22)y(t)=Ce^{(t-{t^2 \over 2})}


y(1)=3=>3=Ce(1122)y(1)=3=>3=Ce^{(1-{1^2 \over 2})}

C=3e12C=3e^{-{1 \over 2}}

y(t)=3e(tt2212)y(t)=3e^{(t-{t^2 \over 2}-{1 \over 2})}

y(t)=3e(t1)22y(t)=3e^{-{(t-1)^2 \over 2}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS