Answer to Question #204912 in Differential Equations for shun

Question #204912

Equation in which M(x,y) and N(x,y) are Linear but not Homogeneous


Find the general solution of the following:

1.) (2x+3y-1)dx-4(x+1)dy=0

2.) (x-4y-3)dx-(x-6y-5)dy=0


1
Expert's answer
2021-06-10T05:29:30-0400

Let us find the general solution of the following:


1) (2x+3y1)dx4(x+1)dy=0(2x+3y-1)dx-4(x+1)dy=0


Let x=u1, y=v+1.x=u-1,\ y =v+1. Then (2(u1)+3(v+1)1)du4udv=0.(2(u-1)+3(v+1)-1)du-4udv=0.

It follows that (2u+3v)du4udv=0.(2u+3v)du-4udv=0.


Let u=tv,u=tv, then du=tdv+vdt.du=tdv+vdt. Then (2tv+3v)(tdv+vdt)4tvdv=0.(2tv+3v)(tdv+vdt)-4tvdv=0.

It follows that (2t+3)(tdv+vdt)4tdv=0,(2t+3)(tdv+vdt)-4tdv=0, and hence (2t2+3t)dv+(2t+3)vdt4tdv=0(2t^2+3t)dv+(2t+3)vdt-4tdv=0 which is equivalent to (2t2t)dv+(2t+3)vdt=0.(2t^2-t)dv+(2t+3)vdt=0. Taking into account that v=0v=0, and thus y=1y=1 is not a solution, we have that dvv=2t+32t2tdt=2t3(2t1)tdt=(3t82t1)dt,\frac{dv}{v}=-\frac{2t+3}{2t^2-t}dt=\frac{-2t-3}{(2t-1)t}dt=(\frac{3}{t}-\frac{8}{2t-1})dt, and thus dvv=(3t82t1)dt.\int\frac{dv}{v}=\int(\frac{3}{t}-\frac{8}{2t-1})dt. It follows that lnv=3lnt4ln2t1+lnC,\ln v =3\ln t -4\ln|2t-1|+ln|C|, and hence v=Ct3(2t1)4.v=\frac{Ct^3}{(2t-1)^4}. Since t=uv=x+1y1,t=\frac{u}{v}=\frac{x+1}{y-1}, we have that y1=C(x+1y1)3(2(x+1y1)1)4=C(x+1)3(y1)(2xy+3)4y-1=\frac{C(\frac{x+1}{y-1})^3}{(2(\frac{x+1}{y-1})-1)^4}=\frac{C(x+1)^3(y-1)}{(2x-y+3)^4}. Since x=1x=-1 is a solution, the general solution we can write in the form:


(x+1)3=C(2xy+3)4.(x+1)^3=C(2x-y+3)^4.



2) (x4y3)dx(x6y5)dy=0(x-4y-3)dx-(x-6y-5)dy=0


Let x=u1, y=v1.x=u-1,\ y=v-1. Then (u14(v1)3)du(u16(v1)5)dv=0.(u-1-4(v-1)-3)du-(u-1-6(v-1)-5)dv=0.

It follows that (u4v)du(u6v)dv=0.(u-4v)du-(u-6v)dv=0.


Let u=tv,u=tv, then du=tdv+vdt.du=tdv+vdt. Then (tv4v)(tdv+vdt)(tv6v)dv=0.(tv-4v)(tdv+vdt)-(tv-6v)dv=0. Taking into account that v=0v=0, and thus y=1y=-1 is not a solution, we have that (t4)(tdv+vdt)(t6)dv=0.(t-4)(tdv+vdt)-(t-6)dv=0. It follows that (t24t)dv+(t4)vdt(t6)dv=0,(t^2-4t)dv+(t-4)vdt-(t-6)dv=0,

and hence (t25t+6)dv+(t4)vdt=0.(t^2-5t+6)dv+(t-4)vdt=0. We have that dvv=t4t25t+6dt=t+4(t2)(t3)dt=(1t32t2)dt,\frac{dv}{v}=-\frac{t-4}{t^2-5t+6}dt=\frac{-t+4}{(t-2)(t-3)}dt=(\frac{1}{t-3}-\frac{2}{t-2})dt, and thus dvv=(1t32t2)dt.\int\frac{dv}{v}=\int(\frac{1}{t-3}-\frac{2}{t-2})dt. Then lnv=lnt32lnt2+lnC,\ln |v|=\ln|t-3|-2\ln|t-2|+\ln|C|, and thus v=C(t3)(t2)2.v=\frac{C(t-3)}{(t-2)^2}. Taking into account that t=uv=x+1y+1,t=\frac{u}{v}=\frac{x+1}{y+1}, we conclude that y+1=C(x+1y+13)(x+1y+12)2=C(y+1)(x3y2)(x2y1)2.y+1=\frac{C(\frac{x+1}{y+1}-3)}{(\frac{x+1}{y+1}-2)^2}=\frac{C(y+1)(x-3y-2)}{(x-2y-1)^2}. It follows that he general solution we can write in the form: (x2y1)2=C(x3y2).(x-2y-1)^2=C(x-3y-2).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

remus
20.06.21, 08:34

Thank you for this!

Leave a comment