y′′′−y=3cos(2x)  Homogeneous Equation
y′′′−y=0 The characteristic (auxiliary) equation
r3−1=0 
(r−1)(r2+r+1)=0 
r1=1,r2,3=−21±i23 
yh=c1ex+e−x/2(c2cos(23x)+c3sin(23x)) 
yp=Asin(2x)+Bcos(2x)  
yp′=2Acos(2x)−2Bsin(2x)  
yp′′=−4Asin(2x)−4Bcos(2x)
yp′′′=−8Acos(2x)+8Bsin(2x)  
Then
−8Acos(2x)+8Bsin(2x) 
−Asin(2x)−Bcos(2x)=3cos(2x)   
8B−A=0 
−8A−B=3  
A=−6524 
B=−653 
  Therefore
y(x)=c1ex+e−x/2(c2cos(23x)+c3sin(23x)) 
−6524sin(2x)−658cos(2x)
                             
Comments