Question #205280

(D3 – 1)y = 3cos2x


1
Expert's answer
2021-06-11T10:11:44-0400
yy=3cos(2x)y'''-y=3\cos(2x)

Homogeneous Equation


yy=0y'''-y=0

The characteristic (auxiliary) equation


r31=0r^3-1=0

(r1)(r2+r+1)=0(r-1)(r^2+r+1)=0

r1=1,r2,3=12±i32r_1=1, r_2,3=-\dfrac{1}{2}\pm i\dfrac{\sqrt{3}}{2}

yh=c1ex+ex/2(c2cos(32x)+c3sin(32x))y_h=c_1e^{x}+e^{-x/2}\bigg(c_2\cos(\dfrac{\sqrt{3}}{2}x)+c_3\sin(\dfrac{\sqrt{3}}{2}x)\bigg)

yp=Asin(2x)+Bcos(2x)y_p=A\sin(2x)+B\cos(2x)

yp=2Acos(2x)2Bsin(2x)y_p'=2A\cos(2x)-2B\sin(2x)

yp=4Asin(2x)4Bcos(2x)y_p''=-4A\sin(2x)-4B\cos(2x)




yp=8Acos(2x)+8Bsin(2x)y_p'''=-8A\cos(2x)+8B\sin(2x)

Then


8Acos(2x)+8Bsin(2x)-8A\cos(2x)+8B\sin(2x)

Asin(2x)Bcos(2x)=3cos(2x)-A\sin(2x)-B\cos(2x)=3\cos(2x)

8BA=08B-A=0

8AB=3-8A-B=3

A=2465A=-\dfrac{24}{65}

B=365B=-\dfrac{3}{65}

Therefore


y(x)=c1ex+ex/2(c2cos(32x)+c3sin(32x))y(x)=c_1e^{x}+e^{-x/2}\bigg(c_2\cos(\dfrac{\sqrt{3}}{2}x)+c_3\sin(\dfrac{\sqrt{3}}{2}x)\bigg)

2465sin(2x)865cos(2x)-\dfrac{24}{65}\sin(2x)-\dfrac{8}{65}\cos(2x)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS