(D3 – 1)y = 3cos2x
Homogeneous Equation
The characteristic (auxiliary) equation
"(r-1)(r^2+r+1)=0"
"r_1=1, r_2,3=-\\dfrac{1}{2}\\pm i\\dfrac{\\sqrt{3}}{2}"
"y_h=c_1e^{x}+e^{-x\/2}\\bigg(c_2\\cos(\\dfrac{\\sqrt{3}}{2}x)+c_3\\sin(\\dfrac{\\sqrt{3}}{2}x)\\bigg)"
"y_p=A\\sin(2x)+B\\cos(2x)"
"y_p'=2A\\cos(2x)-2B\\sin(2x)"
"y_p''=-4A\\sin(2x)-4B\\cos(2x)"
Then
"-A\\sin(2x)-B\\cos(2x)=3\\cos(2x)"
"8B-A=0"
"-8A-B=3"
"A=-\\dfrac{24}{65}"
"B=-\\dfrac{3}{65}"
Therefore
"-\\dfrac{24}{65}\\sin(2x)-\\dfrac{8}{65}\\cos(2x)"
Comments
Leave a comment