Answer to Question #205280 in Differential Equations for shreyas

Question #205280

(D3 – 1)y = 3cos2x


1
Expert's answer
2021-06-11T10:11:44-0400
"y'''-y=3\\cos(2x)"

Homogeneous Equation


"y'''-y=0"

The characteristic (auxiliary) equation


"r^3-1=0"

"(r-1)(r^2+r+1)=0"

"r_1=1, r_2,3=-\\dfrac{1}{2}\\pm i\\dfrac{\\sqrt{3}}{2}"

"y_h=c_1e^{x}+e^{-x\/2}\\bigg(c_2\\cos(\\dfrac{\\sqrt{3}}{2}x)+c_3\\sin(\\dfrac{\\sqrt{3}}{2}x)\\bigg)"

"y_p=A\\sin(2x)+B\\cos(2x)"

"y_p'=2A\\cos(2x)-2B\\sin(2x)"

"y_p''=-4A\\sin(2x)-4B\\cos(2x)"




"y_p'''=-8A\\cos(2x)+8B\\sin(2x)"

Then


"-8A\\cos(2x)+8B\\sin(2x)"

"-A\\sin(2x)-B\\cos(2x)=3\\cos(2x)"

"8B-A=0"

"-8A-B=3"

"A=-\\dfrac{24}{65}"

"B=-\\dfrac{3}{65}"

Therefore


"y(x)=c_1e^{x}+e^{-x\/2}\\bigg(c_2\\cos(\\dfrac{\\sqrt{3}}{2}x)+c_3\\sin(\\dfrac{\\sqrt{3}}{2}x)\\bigg)"

"-\\dfrac{24}{65}\\sin(2x)-\\dfrac{8}{65}\\cos(2x)"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS