(x − 4y -9)dx + (4x + y − 2)dy = 0
Solution
Let’s find stationary point from the system
x − 4y - 9 = 0
4x + y – 2 = 0
From this system 17x – 17 = 0 => x = 1, y = -2
Change of variables: X = x-1, Y = y+2
In new variables equation is: "\\frac{dY}{dX}=-\\frac{x\\ -\\ 4y\\ -9}{4x\\ +\\ y\\ -\\ 2}=-\\frac{X-4Y}{4X+Y}=\\frac{4Y\/X-1}{Y\/X+4}"
Let z = Y/X => Y = z*X => "\\frac{dY}{dX}=\\frac{dz}{dX}X+z" => "\\frac{dz}{dX}X+z=\\frac{4z-1}{z+4}" => "\\frac{dz}{dX}X=-\\frac{z^2+1}{z+4}"
"\\frac{\\left(z+4\\right)dz}{z^2+1}=-\\frac{dX}{X}" => "\\int\\frac{\\left(z+4\\right)dz}{z^2+1}=-\\int\\frac{dX}{X}" => (1/2)*ln(z2+1)+4arctan(z)=-ln|X|+C
C = (1/2)*ln(z2+1)+4arctan(z)+ln|X| = (1/2)*ln(Y2/ X2+1)+4arctan(Y/X)+ln|X| = (1/2)*ln[(y+2)2/(x-1)2+1]+4arctan[(y+2)/(x-1)]+ln|x-1|
Answer
C = (1/2)*ln[(y+2)2/(x-1)2+1]+4arctan[(y+2)/(x-1)]+ln|x-1|
Comments
Leave a comment