Solution
Let’s find stationary point from the system
x − 4y - 9 = 0
4x + y – 2 = 0
From this system 17x – 17 = 0 => x = 1, y = -2
Change of variables: X = x-1, Y = y+2
In new variables equation is: dXdY=−4x + y − 2x − 4y −9=−4X+YX−4Y=Y/X+44Y/X−1
Let z = Y/X => Y = z*X => dXdY=dXdzX+z => dXdzX+z=z+44z−1 => dXdzX=−z+4z2+1
z2+1(z+4)dz=−XdX => ∫z2+1(z+4)dz=−∫XdX => (1/2)*ln(z2+1)+4arctan(z)=-ln|X|+C
C = (1/2)*ln(z2+1)+4arctan(z)+ln|X| = (1/2)*ln(Y2/ X2+1)+4arctan(Y/X)+ln|X| = (1/2)*ln[(y+2)2/(x-1)2+1]+4arctan[(y+2)/(x-1)]+ln|x-1|
Answer
C = (1/2)*ln[(y+2)2/(x-1)2+1]+4arctan[(y+2)/(x-1)]+ln|x-1|
Comments