Answer to Question #205866 in Differential Equations for sania khan

Question #205866

solve power series solution


y'' - 2xy' + y = 0



1
Expert's answer
2021-06-13T17:48:06-0400

Assuming a power series solution like this:


"y=\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n"


"y'=\\displaystyle\\sum_{n=1}^{\\infin}na_nx^{n-1}"

"y''=\\displaystyle\\sum_{n=2}^{\\infin}n(n-1)a_nx^{n-2}"

we get


"\\displaystyle\\sum_{n=2}^{\\infin}n(n-1)a_nx^{n-2}-2x\\displaystyle\\sum_{n=1}^{\\infin}na_nx^{n-1}+\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"


"\\displaystyle\\sum_{n=0}^{\\infin}(n+2)(n+1)a_{n+2}x^{n}-2\\displaystyle\\sum_{n=1}^{\\infin}na_{n}x^{n}+\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"

"\\displaystyle\\sum_{n=0}^{\\infin}(n+2)(n+1)a_{n+2}x^{n}-\\displaystyle\\sum_{n=0}^{\\infin}2na_{n}x^{n}+\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"

"n=0:2a_2+a_0=0"




"=>a_2=-\\dfrac{1}{2}a_0=-\\dfrac{1}{(2(1))!}a_0"

"n\\geq1: (n+2)(n+1)a_{n+2}-2na_n+a_n=0"


"a_{n+2}=\\dfrac{2n-1}{(n+2)(n+1)}a_n, n=0,1,2,..."


"a_{3}=\\dfrac{2(1)-1}{(1+2)(1+1)}a_1=\\dfrac{1}{(2(1)+1)!}a_1"

"a_{4}=\\dfrac{2(2)-1}{(2+2)(2+1)}a_2=\\dfrac{3}{12}a_2=-\\dfrac{3}{(2(2))!}a_0"

"a_{5}=\\dfrac{2(3)-1}{(3+2)(3+1)}a_3=\\dfrac{5}{20}a_3=\\dfrac{1\\cdot5}{(2(2)+1)!}a_1"

"a_{6}=\\dfrac{2(4)-1}{(4+2)(4+1)}a_4=\\dfrac{7}{30}a_4=-\\dfrac{3\\cdot7}{(2(3))!}a_0"

"a_{2k}=-\\dfrac{3\\cdot7\\cdot...\\cdot(4k-5)}{(2k)!}a_0, k=2,3,..."

"a_{2k+1}=\\dfrac{1\\cdot5\\cdot...\\cdot(4k-3)}{(2k+1)!}a_1, k=1,2,3,..."


"y=a_0\\bigg(1-\\dfrac{x^2}{2!}-\\displaystyle\\sum_{n=2}^{\\infin}\\dfrac{3\\cdot7\\cdot...\\cdot(4n-5)}{(2n)!}x^{n}\\bigg)"

"+a_1\\bigg(x+\\displaystyle\\sum_{n=2}^{\\infin}\\dfrac{1\\cdot5\\cdot...\\cdot(4n-3)}{(2n+1)!}x^{n+1}\\bigg)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS