solve power series solution
y'' - 2xy' + y = 0
Assuming a power series solution like this:
"y''=\\displaystyle\\sum_{n=2}^{\\infin}n(n-1)a_nx^{n-2}"
we get
"\\displaystyle\\sum_{n=0}^{\\infin}(n+2)(n+1)a_{n+2}x^{n}-\\displaystyle\\sum_{n=0}^{\\infin}2na_{n}x^{n}+\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"
"n=0:2a_2+a_0=0"
"n\\geq1: (n+2)(n+1)a_{n+2}-2na_n+a_n=0"
"a_{4}=\\dfrac{2(2)-1}{(2+2)(2+1)}a_2=\\dfrac{3}{12}a_2=-\\dfrac{3}{(2(2))!}a_0"
"a_{5}=\\dfrac{2(3)-1}{(3+2)(3+1)}a_3=\\dfrac{5}{20}a_3=\\dfrac{1\\cdot5}{(2(2)+1)!}a_1"
"a_{6}=\\dfrac{2(4)-1}{(4+2)(4+1)}a_4=\\dfrac{7}{30}a_4=-\\dfrac{3\\cdot7}{(2(3))!}a_0"
"a_{2k}=-\\dfrac{3\\cdot7\\cdot...\\cdot(4k-5)}{(2k)!}a_0, k=2,3,..."
"a_{2k+1}=\\dfrac{1\\cdot5\\cdot...\\cdot(4k-3)}{(2k+1)!}a_1, k=1,2,3,..."
"+a_1\\bigg(x+\\displaystyle\\sum_{n=2}^{\\infin}\\dfrac{1\\cdot5\\cdot...\\cdot(4n-3)}{(2n+1)!}x^{n+1}\\bigg)"
Comments
Leave a comment