Assuming a power series solution like this:
y=n=0∑∞anxn
y′=n=1∑∞nanxn−1
y′′=n=2∑∞n(n−1)anxn−2 we get
n=2∑∞n(n−1)anxn−2−2xn=1∑∞nanxn−1+n=0∑∞anxn=0
n=0∑∞(n+2)(n+1)an+2xn−2n=1∑∞nanxn+n=0∑∞anxn=0
n=0∑∞(n+2)(n+1)an+2xn−n=0∑∞2nanxn+n=0∑∞anxn=0
n=0:2a2+a0=0
=>a2=−21a0=−(2(1))!1a0
n≥1:(n+2)(n+1)an+2−2nan+an=0
an+2=(n+2)(n+1)2n−1an,n=0,1,2,...
a3=(1+2)(1+1)2(1)−1a1=(2(1)+1)!1a1
a4=(2+2)(2+1)2(2)−1a2=123a2=−(2(2))!3a0
a5=(3+2)(3+1)2(3)−1a3=205a3=(2(2)+1)!1⋅5a1
a6=(4+2)(4+1)2(4)−1a4=307a4=−(2(3))!3⋅7a0
a2k=−(2k)!3⋅7⋅...⋅(4k−5)a0,k=2,3,...
a2k+1=(2k+1)!1⋅5⋅...⋅(4k−3)a1,k=1,2,3,...
y=a0(1−2!x2−n=2∑∞(2n)!3⋅7⋅...⋅(4n−5)xn)
+a1(x+n=2∑∞(2n+1)!1⋅5⋅...⋅(4n−3)xn+1)
Comments
Leave a comment