Answer to Question #205866 in Differential Equations for sania khan

Question #205866

solve power series solution


y'' - 2xy' + y = 0



1
Expert's answer
2021-06-13T17:48:06-0400

Assuming a power series solution like this:


y=n=0anxny=\displaystyle\sum_{n=0}^{\infin}a_nx^n


y=n=1nanxn1y'=\displaystyle\sum_{n=1}^{\infin}na_nx^{n-1}

y=n=2n(n1)anxn2y''=\displaystyle\sum_{n=2}^{\infin}n(n-1)a_nx^{n-2}

we get


n=2n(n1)anxn22xn=1nanxn1+n=0anxn=0\displaystyle\sum_{n=2}^{\infin}n(n-1)a_nx^{n-2}-2x\displaystyle\sum_{n=1}^{\infin}na_nx^{n-1}+\displaystyle\sum_{n=0}^{\infin}a_nx^n=0


n=0(n+2)(n+1)an+2xn2n=1nanxn+n=0anxn=0\displaystyle\sum_{n=0}^{\infin}(n+2)(n+1)a_{n+2}x^{n}-2\displaystyle\sum_{n=1}^{\infin}na_{n}x^{n}+\displaystyle\sum_{n=0}^{\infin}a_nx^n=0

n=0(n+2)(n+1)an+2xnn=02nanxn+n=0anxn=0\displaystyle\sum_{n=0}^{\infin}(n+2)(n+1)a_{n+2}x^{n}-\displaystyle\sum_{n=0}^{\infin}2na_{n}x^{n}+\displaystyle\sum_{n=0}^{\infin}a_nx^n=0

n=0:2a2+a0=0n=0:2a_2+a_0=0




=>a2=12a0=1(2(1))!a0=>a_2=-\dfrac{1}{2}a_0=-\dfrac{1}{(2(1))!}a_0

n1:(n+2)(n+1)an+22nan+an=0n\geq1: (n+2)(n+1)a_{n+2}-2na_n+a_n=0


an+2=2n1(n+2)(n+1)an,n=0,1,2,...a_{n+2}=\dfrac{2n-1}{(n+2)(n+1)}a_n, n=0,1,2,...


a3=2(1)1(1+2)(1+1)a1=1(2(1)+1)!a1a_{3}=\dfrac{2(1)-1}{(1+2)(1+1)}a_1=\dfrac{1}{(2(1)+1)!}a_1

a4=2(2)1(2+2)(2+1)a2=312a2=3(2(2))!a0a_{4}=\dfrac{2(2)-1}{(2+2)(2+1)}a_2=\dfrac{3}{12}a_2=-\dfrac{3}{(2(2))!}a_0

a5=2(3)1(3+2)(3+1)a3=520a3=15(2(2)+1)!a1a_{5}=\dfrac{2(3)-1}{(3+2)(3+1)}a_3=\dfrac{5}{20}a_3=\dfrac{1\cdot5}{(2(2)+1)!}a_1

a6=2(4)1(4+2)(4+1)a4=730a4=37(2(3))!a0a_{6}=\dfrac{2(4)-1}{(4+2)(4+1)}a_4=\dfrac{7}{30}a_4=-\dfrac{3\cdot7}{(2(3))!}a_0

a2k=37...(4k5)(2k)!a0,k=2,3,...a_{2k}=-\dfrac{3\cdot7\cdot...\cdot(4k-5)}{(2k)!}a_0, k=2,3,...

a2k+1=15...(4k3)(2k+1)!a1,k=1,2,3,...a_{2k+1}=\dfrac{1\cdot5\cdot...\cdot(4k-3)}{(2k+1)!}a_1, k=1,2,3,...


y=a0(1x22!n=237...(4n5)(2n)!xn)y=a_0\bigg(1-\dfrac{x^2}{2!}-\displaystyle\sum_{n=2}^{\infin}\dfrac{3\cdot7\cdot...\cdot(4n-5)}{(2n)!}x^{n}\bigg)

+a1(x+n=215...(4n3)(2n+1)!xn+1)+a_1\bigg(x+\displaystyle\sum_{n=2}^{\infin}\dfrac{1\cdot5\cdot...\cdot(4n-3)}{(2n+1)!}x^{n+1}\bigg)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment