Solve;Β Β (π§ 2 β 2π¦π§ β π¦ 2 )π + (π₯π¦ + π§π₯)π = π₯π¦ β π§x
"(z^2-2yz-y^2)z_x+(xy+zx)z_y= xy-zx\\\\\n\\text{By Charpit-Lagrange method :}\\\\\n\\frac{dx}{z2\u22122yz\u2212y2}=\\frac{dy}{xy+zx}=\\frac{dz}{xy\u2212zx}\\\\\n\\text{First characteristic equation,}\\\\ \\frac{\ndy}{xy+zx}=\\frac{\ndz}{xy\u2212zx}\\\\\\frac{\ndz}{dy}=\\frac{y\u2212z}{y+z} \\\\\nz^2+2yz\u2212y^2=c1\\\\\n\\text{Second characteristic equation,}\\\\\n\\frac{xdx+ydy+zdz}{x(z^2-2yz-y^2)+y(xy+zx)+z(xy-zx)}=0\\\\\\frac{xdx+ydy+zdz}{0}=0\\\\\\implies xdx+ydy+zdz=0\\\\\nx^2+y^2+z^2=c2\n\\\\\n\\text{Therefore, solution is given by,}\\\\\nx^2+y^2+z^2=f(z^2+2yz-y^2)"
Comments
Leave a comment