Answer to Question #205868 in Differential Equations for sania khan

Question #205868

solve power series solution


y'' - (x+1) y' -y = 0



1
Expert's answer
2021-06-14T11:13:09-0400

"y=\\sum c_nx^n \\newline\ny'=\\sum nc_nx^{n-1} \\newline\ny''=\\sum n(n-1)c_nx^{n-2} \\newline\n\\text{substitute the above value in the given equation, we get}\\newline\n\n\\implies \\sum_{n=2}^\\infty n(n-1)c_nx^{n-2}-(x+1)\\sum_{n=1}^\\infty nc_nx^{n-1}-\\sum_{n=0}^\\infty c_nx^n=0 \\newline\n\n\\implies\n\\sum_{n=0}^\\infty (n+2)(n+1)c_{n+2}x^{n}-\\sum_{n=1}^\\infty nc_{n}x^{n}-\\sum_{n=0}^\\infty (n+1)c_{n+1}x^{n}\n-\\sum_{n=0}^\\infty c_nx^n=0 \\newline\n\n\\implies\n2c_2-c_1-c_0+\\sum_{n=1}^\\infty (n+2)(n+1)c_{n+2}x^{n}-\\sum_{n=1}^\\infty nc_{n}x^{n}-\\sum_{n=1}^\\infty (n+1)c_{n+1}x^{n}\n-\\sum_{n=1}^\\infty c_nx^n=0 \\newline\n\n\\implies\n2c_2-c_1-c_0+\\sum_{n=1}^\\infty\n[(n+2)(n+1)c_{n+2}- nc_n-(n+1)c_{n+1}-c_n]x^n=0 \\newline\n\n\\text{We get,}\\newline\n2c_2-c_1-c_0=0\\\\\n\\text{and\nthe recurrence relation is,}\\\\\n(n+2)(n+1)c_{n+2}- nc_n-(n+1)c_{n+1}-c_n=0\\\\\n(n+2)(n+1)c_{n+2}- (n+1)c_{n+1}-(n+1)c_n=0\\\\\nc_{n+2}=\\frac{(n+1)c_{n+1}+(n+1)c_n}{\n(n+2)(n+1)}\\\\\nc_{n+2}=\\frac{c_{n+1}+c_n}{(n+2)}\\\\\n\n\\text{Thus, the solution is given by }\\newline\ny=c_0y1+c_1y_2.\\\\\nLet c_0=1, c_1=0, \\implies y=y_1.\\\\\nThen, c_2=1\/2, c_3=3\/4.\\\\\nTherefore, y_1=1+\\frac{1}{2}x^2+\\frac{1}{4}x^3+\u2022\u2022\u2022.\\\\\nSimilarly,\\newline\n c_0=0, c_1=1, \\implies y=y_2.\\newline\nThen, c_2=1\/2, c_3=3\/4.\\newline\nTherefore,\ny_2=x+\\frac{1}{2}x^2+\\frac{3}{4}x^3+\u2022\u2022\u2022."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS