Question #205868

solve power series solution


y'' - (x+1) y' -y = 0



1
Expert's answer
2021-06-14T11:13:09-0400

y=cnxny=ncnxn1y=n(n1)cnxn2substitute the above value in the given equation, we get    n=2n(n1)cnxn2(x+1)n=1ncnxn1n=0cnxn=0    n=0(n+2)(n+1)cn+2xnn=1ncnxnn=0(n+1)cn+1xnn=0cnxn=0    2c2c1c0+n=1(n+2)(n+1)cn+2xnn=1ncnxnn=1(n+1)cn+1xnn=1cnxn=0    2c2c1c0+n=1[(n+2)(n+1)cn+2ncn(n+1)cn+1cn]xn=0We get,2c2c1c0=0and the recurrence relation is,(n+2)(n+1)cn+2ncn(n+1)cn+1cn=0(n+2)(n+1)cn+2(n+1)cn+1(n+1)cn=0cn+2=(n+1)cn+1+(n+1)cn(n+2)(n+1)cn+2=cn+1+cn(n+2)Thus, the solution is given by y=c0y1+c1y2.Letc0=1,c1=0,    y=y1.Then,c2=1/2,c3=3/4.Therefore,y1=1+12x2+14x3+•••.Similarly,c0=0,c1=1,    y=y2.Then,c2=1/2,c3=3/4.Therefore,y2=x+12x2+34x3+•••.y=\sum c_nx^n \newline y'=\sum nc_nx^{n-1} \newline y''=\sum n(n-1)c_nx^{n-2} \newline \text{substitute the above value in the given equation, we get}\newline \implies \sum_{n=2}^\infty n(n-1)c_nx^{n-2}-(x+1)\sum_{n=1}^\infty nc_nx^{n-1}-\sum_{n=0}^\infty c_nx^n=0 \newline \implies \sum_{n=0}^\infty (n+2)(n+1)c_{n+2}x^{n}-\sum_{n=1}^\infty nc_{n}x^{n}-\sum_{n=0}^\infty (n+1)c_{n+1}x^{n} -\sum_{n=0}^\infty c_nx^n=0 \newline \implies 2c_2-c_1-c_0+\sum_{n=1}^\infty (n+2)(n+1)c_{n+2}x^{n}-\sum_{n=1}^\infty nc_{n}x^{n}-\sum_{n=1}^\infty (n+1)c_{n+1}x^{n} -\sum_{n=1}^\infty c_nx^n=0 \newline \implies 2c_2-c_1-c_0+\sum_{n=1}^\infty [(n+2)(n+1)c_{n+2}- nc_n-(n+1)c_{n+1}-c_n]x^n=0 \newline \text{We get,}\newline 2c_2-c_1-c_0=0\\ \text{and the recurrence relation is,}\\ (n+2)(n+1)c_{n+2}- nc_n-(n+1)c_{n+1}-c_n=0\\ (n+2)(n+1)c_{n+2}- (n+1)c_{n+1}-(n+1)c_n=0\\ c_{n+2}=\frac{(n+1)c_{n+1}+(n+1)c_n}{ (n+2)(n+1)}\\ c_{n+2}=\frac{c_{n+1}+c_n}{(n+2)}\\ \text{Thus, the solution is given by }\newline y=c_0y1+c_1y_2.\\ Let c_0=1, c_1=0, \implies y=y_1.\\ Then, c_2=1/2, c_3=3/4.\\ Therefore, y_1=1+\frac{1}{2}x^2+\frac{1}{4}x^3+•••.\\ Similarly,\newline c_0=0, c_1=1, \implies y=y_2.\newline Then, c_2=1/2, c_3=3/4.\newline Therefore, y_2=x+\frac{1}{2}x^2+\frac{3}{4}x^3+•••.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS