y=∑cnxny′=∑ncnxn−1y′′=∑n(n−1)cnxn−2substitute the above value in the given equation, we get⟹∑n=2∞n(n−1)cnxn−2−(x+1)∑n=1∞ncnxn−1−∑n=0∞cnxn=0⟹∑n=0∞(n+2)(n+1)cn+2xn−∑n=1∞ncnxn−∑n=0∞(n+1)cn+1xn−∑n=0∞cnxn=0⟹2c2−c1−c0+∑n=1∞(n+2)(n+1)cn+2xn−∑n=1∞ncnxn−∑n=1∞(n+1)cn+1xn−∑n=1∞cnxn=0⟹2c2−c1−c0+∑n=1∞[(n+2)(n+1)cn+2−ncn−(n+1)cn+1−cn]xn=0We get,2c2−c1−c0=0and the recurrence relation is,(n+2)(n+1)cn+2−ncn−(n+1)cn+1−cn=0(n+2)(n+1)cn+2−(n+1)cn+1−(n+1)cn=0cn+2=(n+2)(n+1)(n+1)cn+1+(n+1)cncn+2=(n+2)cn+1+cnThus, the solution is given by y=c0y1+c1y2.Letc0=1,c1=0,⟹y=y1.Then,c2=1/2,c3=3/4.Therefore,y1=1+21x2+41x3+•••.Similarly,c0=0,c1=1,⟹y=y2.Then,c2=1/2,c3=3/4.Therefore,y2=x+21x2+43x3+•••.
Comments