Answer to Question #206651 in Differential Equations for Tanjeel

Question #206651

z(x+y)p+z(x-y)q=x^2+y^2 


1
Expert's answer
2021-06-14T19:17:49-0400

By lagrange method,dxz(x+y)=dyz(xy)=dzx2y2first,dxz(x+y)=dyz(xy)dxx+y=dyxyxdxydyxdyydx=0xdxydyd(xy)=0Integrating, we getx2y22xy=c1Second,xdxydyzdzz(x+y)z(xy)z(x2+y2)=0xdxydyzdz=0x2y2z2=c2Therefore,solution is given by,F(x2y22xy,x2y2z2)=0\text{By lagrange method,}\\ \frac{dx}{z(x+y)}=\frac{dy}{z(x-y)}=\frac{dz}{x^2-y^2}\\ first,\\ \frac{dx}{z(x+y)}=\frac{dy}{z(x-y)}\\ \frac{dx}{x+y}=\frac{dy}{x-y}\\ xdx-ydy-xdy-ydx=0\\ xdx-ydy-d(xy)=0\\ \text{Integrating, we get}\\ x^2-y^2-2xy=c_1\\ Second,\\ \frac{xdx-ydy-zdz}{z(x+y)-z(x-y)-z(x^2+y^2)}=0\\ xdx-ydy-zdz=0\\ x^2-y^2-z^2=c_2\\ Therefore,\\ \text{solution is given by,}\\ F(x^2-y^2-2xy,x^2-y^2-z^2)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment