By lagrange method,z(x+y)dx=z(x−y)dy=x2−y2dzfirst,z(x+y)dx=z(x−y)dyx+ydx=x−ydyxdx−ydy−xdy−ydx=0xdx−ydy−d(xy)=0Integrating, we getx2−y2−2xy=c1Second,z(x+y)−z(x−y)−z(x2+y2)xdx−ydy−zdz=0xdx−ydy−zdz=0x2−y2−z2=c2Therefore,solution is given by,F(x2−y2−2xy,x2−y2−z2)=0
Comments
Leave a comment