Question #206473

Verify that the differential equation (y^2+yz)dx+(xz+z^2)dy+(y^2-xy)dz=0 is integrable and find its primitive


1
Expert's answer
2021-06-14T15:33:17-0400

The necessary and sufficient condition for iintegrability is


XcurlX=0X\cdot curl X=0



X=(y2+yz,xz+z2,y2xy)X=(y^2+yz,xz+z^2,y^2-xy) so that



×X=ijkxyzy2+yzxz+z2y2xy\nabla\times X=\begin{vmatrix} \vec i & \vec j & \vec k \\ {\partial\over \partial x} & {\partial\over \partial y} & {\partial\over \partial z} \\ y^2+yz & xz+z^2 & y^2-xy \end{vmatrix}




=(2yxx2z)i+(y+y)j+(z2yz)k=(2y-x-x-2z)\vec i+(y+y)\vec j + (z-2y-z)\vec k




=(2y2x2z)i+(2y)j+(2y)k=(2y-2x-2z)\vec i+(2y)\vec j + (-2y)\vec k




X(×X)=2y32xy22y2z+2y2zX\cdot (\nabla\times X)=2y^3-2xy^2-2y^2z+2y^2z




2xyz2yz2+2xyz+2yz22y3+2xy2=0-2xyz-2yz^2+2xyz+2yz^2-2y^3+2xy^2=0

Thus the given equation is integrable.


Solve by Inspection


y(y+z)dx+z(x+z)dy+y(yx)dz=0y(y+z)dx+z(x+z)dy+y(y-x)dz=0

Or


y(y+z)dx+y(y+z)dzy(y+z)dzy(y+z)dx+y(y+z)dz-y(y+z)dz




+z(x+z)dy+y(x+z)dyy(x+z)dy+z(x+z)dy+y(x+z)dy-y(x+z)dy




+y(yx)dz=0+y(y-x)dz=0

Or


y(y+z)d(x+z)+(y+z)(x+z)dyy(y+z)d(x+z)+(y+z)(x+z)dy




ydz(y+zy+x)y(x+z)dy=0-ydz(y+z-y+x)-y(x+z)dy=0

Or



y(y+z)d(x+z)+(y+z)(x+z)dyy(x+z)d(y+z)=0y(y+z)d(x+z)+(y+z)(x+z)dy-y(x+z)d(y+z)=0




d(x+z)x+z+dyyd(y+z)y+z=0{d(x+z) \over x+z}+{dy\over y}-{d(y+z) \over y+z}=0

The complete primitive is given as


y(x+z)=c(y+z)y(x+z)=c(y+z)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS