Answer to Question #206473 in Differential Equations for Keem

Question #206473

Verify that the differential equation (y^2+yz)dx+(xz+z^2)dy+(y^2-xy)dz=0 is integrable and find its primitive


1
Expert's answer
2021-06-14T15:33:17-0400

The necessary and sufficient condition for iintegrability is


"X\\cdot curl X=0"



"X=(y^2+yz,xz+z^2,y^2-xy)" so that



"\\nabla\\times X=\\begin{vmatrix}\n\\vec i & \\vec j & \\vec k \\\\\n {\\partial\\over \\partial x} & {\\partial\\over \\partial y} & {\\partial\\over \\partial z}\n\\\\\n y^2+yz & xz+z^2 & y^2-xy\n\\end{vmatrix}"




"=(2y-x-x-2z)\\vec i+(y+y)\\vec j + (z-2y-z)\\vec k"




"=(2y-2x-2z)\\vec i+(2y)\\vec j + (-2y)\\vec k"




"X\\cdot (\\nabla\\times X)=2y^3-2xy^2-2y^2z+2y^2z"




"-2xyz-2yz^2+2xyz+2yz^2-2y^3+2xy^2=0"

Thus the given equation is integrable.


Solve by Inspection


"y(y+z)dx+z(x+z)dy+y(y-x)dz=0"

Or


"y(y+z)dx+y(y+z)dz-y(y+z)dz"




"+z(x+z)dy+y(x+z)dy-y(x+z)dy"




"+y(y-x)dz=0"

Or


"y(y+z)d(x+z)+(y+z)(x+z)dy"




"-ydz(y+z-y+x)-y(x+z)dy=0"

Or



"y(y+z)d(x+z)+(y+z)(x+z)dy-y(x+z)d(y+z)=0"




"{d(x+z) \\over x+z}+{dy\\over y}-{d(y+z) \\over y+z}=0"

The complete primitive is given as


"y(x+z)=c(y+z)"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS