Given the equation:
y′′+3y′+2y=e−x+e−2x−x We can rewrite the equation using the notation as:
dx2d2y(x)+3dxdy(x)+2y(x)=e−x+e−2x−x
The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving:
dx2d2y(x)+3dxdy(x)+2y(x)=0: Assume a solution will be proportional to eλx for some constant λ.Substitute y(x)=eλx into the differential equation:
dx2d2(eλx)+3dxd(eλx)+2eλx=0Substitute dx2d2(eλx)=λ2eλx and dxd(eλx)=λeλx:λ2exx+3λeλx+2eλx=0Factor out eλx:(λ2+3λ+2)eλx=0 Since eλx=0for any finite λ,the zeros must come from the polynomial:λ2+3λ+2=0Factor:(λ+1)(λ+2)=0Solveforλ:λ=−2orλ=−1Therootλ=−2givesy1(x)=c1e−2xasasolution,wherec1isanarbitraryconstant.Therootλ=−1givesy2(x)=c2e−xasasolution,wherec2isanarbitraryconstant.Thegeneralsolutionisthesumoftheabovesolutions:y(x)=y1(x)+y2(x)=c1e−2x+c2e−xDeterminetheparticularsolutiontodx2d2y(x)+3dxdy(x)+2y(x)=e−x+e−2x−xby the method of undetermined coefficients: Theparticularsolutionwillbethesumoftheparticularsolutionstodx2d2y(x)+3dxdy(x)+2y(x)=−x,dx2d2y(x)+3dxdy(x)+2y(x)=e−2xanddx2d2y(x)+3dxdy(x)+2y(x)=e−x
The particular solution to dx2d2y(x)+3dxdy(x)+2y(x)=−x is of the form:yp1(x)=a1+a2x The particular solution to dx2d2y(x)+3dxdy(x)+2y(x)=e−2xisoftheform:yp2(x)=x(a3e−2x),wherea3e−2x was multiplied byx to account for e−2xinthecomplementarysolution.Theparticularsolutiontodx2d2y(x)+3dxdy(x)+2y(x)=e−xisoftheform:yp3(x)=x(a4e−x),wherea4e−xwasmultipliedbyxtoaccountfore−xinthecomplementarysolution.Sumyp1(x),yp2(x),andyp3(x)toobtainyp(x):yp(x)=yp1(x)+yp2(x)+yp3(x)=a1+a2x+a3e−2xx+a4e−xxSolvefortheunknownconstantsa1,a2,a3,anda4:Computedxdyp(x):dxdyp(x)=dxd(a1+a2x+a3e−2xx+a4e−xx)=a2+a3e−2x−2a3e−2xx+a4e−x−a4e−xx
Computedx2d2yp(x):dx2d2yp(x)=dx2d2(a1+a2x+a3e−2xx+a4e−xx)=a3(−4e−2x+4e−2xx)+a4(−2e−x+e−xx)Substitutetheparticularsolutionyp(x)intothedifferentialequation:dx2d2yp(x)+3dxdyp(x)+2yp(x)=e−x+e−2x−xa3(−4e−2x+4e−2xx)+a4(−2e−x+e−xx)+3(a2+a3e−2x−2a3e−2xx+a4e−x−a4e−xx)+2(a1+a2x+a3e−2xx+a4e−xx)=e−x+e−2x−xSimplify:2a1+3a2−a3e−2x+a4e−x+2a2x=e−2x+e−x−xEquatethecoefficientsof1onbothsidesoftheequation:2a1+3a2=0Equatethecoefficientsofe−2xonbothsidesoftheequation:−a3=1
Equatethecoefficientsofe−xonbothsidesoftheequation:a4=1Equatethecoefficientsofxonbothsidesoftheequation:2a2=−1Solvethesystem:a1=43a2=−21a3=−1a4=1Substitutea1,a2,a3, and a4intoyp(x)=a1+xa2+e−2xxa3+e−xxa4:yp(x)=−2x+e−xx−e−2xx+43Thegeneralsolutionis:y(x)=yc(x)+yp(x)=−2x+e−xx−e−2xx+c1e−2x+c2e−x+43
which is the required answer
Comments
Leave a comment