solve the undetermined coefficient y''+3y'+2y=e-x +e-2x -x
Given the equation:
We can rewrite the equation using the notation as:
The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving:
"\\text{Assume a solution will be proportional to } e^{\\lambda x} \\text{ for some constant } \\lambda.\\\\\n\\text{Substitute } y(x)=e^{\\lambda x} \\text{ into the differential equation:}\\\\"
"\\text{Since } e^{\\lambda x} \\neq 0 \\text{for any finite }\\lambda, \\text{the zeros must come from the polynomial:}\\\\\n\\lambda^{2}+3 \\lambda+2=0\\\\\nFactor:\\\\\n(\\lambda+1)(\\lambda+2)=0\\\\\nSolve for \\lambda :\\\\\n\\lambda=-2 or \\lambda=-1\\\\\nThe root \\lambda=-2 gives y_{1}(x)=c_{1} e^{-2 x} as a solution, where c_{1} is an arbitrary constant.\\\\\n\nThe root \\lambda=-1 gives y_{2}(x)=c_{2} e^{-x} as a solution, where c_{2} is an arbitrary constant.\\\\\nThe general solution is the sum of the above solutions:\\\\\ny(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{-2 x}+c_{2} e^{-x}\\\\\nDetermine the particular solution to\\\\ \\frac{d^{2} y(x)}{d x^{2}}+3 \\frac{d y(x)}{d x}+2 y(x)=e^{-x}+e^{-2 x}-x \\\\\\text{by the method of undetermined coefficients: }\\\\\nThe particular solution will be the sum of the particular solutions to\\\\\n \\frac{d^{2} y(x)}{d x^{2}}+3 \\frac{d y(x)}{d x}+2 y(x)=-x, \\frac{d^{2} y(x)}{d x^{2}}+3 \\frac{d y(x)}{d x}+2 y(x)=e^{-2 x} and\\\\\n\\frac{d^{2} y(x)}{d x^{2}}+3 \\frac{d y(x)}{d x}+2 y(x)=e^{-x}"
"\\text{ The particular solution to } \\frac{d^{2} y(x)}{d x^{2}}+3 \\frac{d y(x)}{d x}+2 y(x)=-x \\text{ is of the form:}\\\\\ny_{p_{1}}(x)=a_{1}+a_{2} x\\\\\n\\text{ The particular solution to }\\frac{d^{2} y(x)}{d x^{2}}+3 \\frac{d y(x)}{d x}+2 y(x)=e^{-2 x} is of the form:\\\\\ny_{p_{2}}(x)=x\\left(a_{3} e^{-2 x}\\right), where a_{3} e^{-2 x} \\text{ was multiplied by} x \\text{ to account for }e^{-2 x} in the complementary solution.\\\\\nThe particular solution to \\frac{d^{2} y(x)}{d x^{2}}+3 \\frac{d y(x)}{d x}+2 y(x)=e^{-x} is of the form:\\\\\ny_{p_{3}}(x)=x\\left(a_{4} e^{-x}\\right), where a_{4} e^{-x} was multiplied by x to account for e^{-x} in the complementary solution.\\\\\nSum y_{p_{1}}(x), y_{p_{2}}(x), and y_{p_{3}}(x) to obtain y_{p}(x) :\\\\\ny_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)+y_{p_{3}}(x)=a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\\\\\nSolve for the unknown constants a_{1}, a_{2}, a_{3}, and a_{4} :\\\\\nCompute \\frac{d y_{p}(x)}{d x}:\\\\\n\\frac{d y_{p}(x)}{d x}=\\frac{d}{d x}\\left(a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\\right)\\\\\n=a_{2}+a_{3} e^{-2 x}-2 a_{3} e^{-2 x} x+a_{4} e^{-x}-a_{4} e^{-x} x"
"Compute \\frac{d^{2} y_{p}(x)}{d x^{2}}:\\\\\n\\frac{d^{2} y_{p}(x)}{d x^{2}}=\\frac{d^{2}}{d x^{2}}\\left(a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\\right)\\\\\n=a_{3}\\left(-4 e^{-2 x}+4 e^{-2 x} x\\right)+a_{4}\\left(-2 e^{-x}+e^{-x} x\\right)\\\\\nSubstitute the particular solution y_{p}(x) into the differential equation:\\\\\n\\frac{d^{2} y_{p}(x)}{d x^{2}}+3 \\frac{d y_{p}(x)}{d x}+2 y_{p}(x)=e^{-x}+e^{-2 x}-x\\\\\na_{3}\\left(-4 e^{-2 x}+4 e^{-2 x} x\\right)+a_{4}\\left(-2 e^{-x}+e^{-x} x\\right)+\n3\\left(a_{2}+a_{3} e^{-2 x}-2 a_{3} e^{-2 x} x+a_{4} e^{-x}-a_{4} e^{-x} x\\right)+\n2\\left(a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\\right)=e^{-x}+e^{-2 x}-x\\\\\nSimplify:\\\\\n2 a_{1}+3 a_{2}-a_{3} e^{-2 x}+a_{4} e^{-x}+2 a_{2} x=e^{-2 x}+e^{-x}-x\\\\\nEquate the coefficients of 1 on both sides of the equation:\\\\\n2 a_{1}+3 a_{2}=0\\\\\nEquate the coefficients of e^{-2 x} on both sides of the equation:\\\\\n-a_{3}=1"
"Equate the coefficients of e^{-x} on both sides of the equation:\\\\\na_{4}=1\\\\\nEquate the coefficients of x on both sides of the equation:\\\\\n2 a_{2}=-1\\\\\nSolve the system:\\\\\na_{1}=\\frac{3}{4}\\\\\na_{2}=-\\frac{1}{2}\\\\\na_{3}=-1\\\\\na_{4}=1\\\\\nSubstitute a_{1}, a_{2}, a_{3}, \\text{ and }a_{4} into y_{p}(x)=a_{1}+x a_{2}+e^{-2 x} x a_{3}+e^{-x} x a_{4} :\\\\\ny_{p}(x)=-\\frac{x}{2}+e^{-x} x-e^{-2 x} x+\\frac{3}{4}\\\\\nThe general solution is:\\\\\n\ny(x)=y_{\\mathrm{c}}(x)+y_{p}(x)=-\\frac{x}{2}+e^{-x} x-e^{-2 x} x+c_{1} e^{-2 x}+c_{2} e^{-x}+\\frac{3}{4}"
which is the required answer
Comments
Leave a comment