Answer to Question #199970 in Differential Equations for sania khan

Question #199970

solve the undetermined coefficient y''+3y'+2y=e-x +e-2x -x

1
Expert's answer
2021-05-31T19:35:35-0400

Given the equation:


y+3y+2y=ex+e2xxy''+3y'+2y=e^{-x} +e^{-2x} -x

We can rewrite the equation using the notation as:


d2y(x)dx2+3dy(x)dx+2y(x)=ex+e2xx\frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=e^{-x}+e^{-2 x}-x \\

The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving:


d2y(x)dx2+3dy(x)dx+2y(x)=0:\frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=0 :

Assume a solution will be proportional to eλx for some constant λ.Substitute y(x)=eλx into the differential equation:\text{Assume a solution will be proportional to } e^{\lambda x} \text{ for some constant } \lambda.\\ \text{Substitute } y(x)=e^{\lambda x} \text{ into the differential equation:}\\



d2dx2(eλx)+3ddx(eλx)+2eλx=0Substitute d2dx2(eλx)=λ2eλx and ddx(eλx)=λeλx:λ2exx+3λeλx+2eλx=0Factor out eλx:(λ2+3λ+2)eλx=0\frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)+3 \frac{d}{d x}\left(e^{\lambda x}\right)+2 e^{\lambda x}=0\\ \text{Substitute } \frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)=\lambda^{2} e^{\lambda x} \text{ and } \frac{d}{d x}\left(e^{\lambda x}\right)=\lambda e^{\lambda x}:\\ \lambda^{2} e^{x x}+3 \lambda e^{\lambda x}+2 e^{\lambda x}=0\\ \text{Factor out } e^{\lambda x} : \left(\lambda^{2}+3 \lambda+2\right) e^{\lambda x}=0

Since eλx0for any finite λ,the zeros must come from the polynomial:λ2+3λ+2=0Factor:(λ+1)(λ+2)=0Solveforλ:λ=2orλ=1Therootλ=2givesy1(x)=c1e2xasasolution,wherec1isanarbitraryconstant.Therootλ=1givesy2(x)=c2exasasolution,wherec2isanarbitraryconstant.Thegeneralsolutionisthesumoftheabovesolutions:y(x)=y1(x)+y2(x)=c1e2x+c2exDeterminetheparticularsolutiontod2y(x)dx2+3dy(x)dx+2y(x)=ex+e2xxby the method of undetermined coefficients: Theparticularsolutionwillbethesumoftheparticularsolutionstod2y(x)dx2+3dy(x)dx+2y(x)=x,d2y(x)dx2+3dy(x)dx+2y(x)=e2xandd2y(x)dx2+3dy(x)dx+2y(x)=ex\text{Since } e^{\lambda x} \neq 0 \text{for any finite }\lambda, \text{the zeros must come from the polynomial:}\\ \lambda^{2}+3 \lambda+2=0\\ Factor:\\ (\lambda+1)(\lambda+2)=0\\ Solve for \lambda :\\ \lambda=-2 or \lambda=-1\\ The root \lambda=-2 gives y_{1}(x)=c_{1} e^{-2 x} as a solution, where c_{1} is an arbitrary constant.\\ The root \lambda=-1 gives y_{2}(x)=c_{2} e^{-x} as a solution, where c_{2} is an arbitrary constant.\\ The general solution is the sum of the above solutions:\\ y(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{-2 x}+c_{2} e^{-x}\\ Determine the particular solution to\\ \frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=e^{-x}+e^{-2 x}-x \\\text{by the method of undetermined coefficients: }\\ The particular solution will be the sum of the particular solutions to\\ \frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=-x, \frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=e^{-2 x} and\\ \frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=e^{-x}


 The particular solution to d2y(x)dx2+3dy(x)dx+2y(x)=x is of the form:yp1(x)=a1+a2x The particular solution to d2y(x)dx2+3dy(x)dx+2y(x)=e2xisoftheform:yp2(x)=x(a3e2x),wherea3e2x was multiplied byx to account for e2xinthecomplementarysolution.Theparticularsolutiontod2y(x)dx2+3dy(x)dx+2y(x)=exisoftheform:yp3(x)=x(a4ex),wherea4exwasmultipliedbyxtoaccountforexinthecomplementarysolution.Sumyp1(x),yp2(x),andyp3(x)toobtainyp(x):yp(x)=yp1(x)+yp2(x)+yp3(x)=a1+a2x+a3e2xx+a4exxSolvefortheunknownconstantsa1,a2,a3,anda4:Computedyp(x)dx:dyp(x)dx=ddx(a1+a2x+a3e2xx+a4exx)=a2+a3e2x2a3e2xx+a4exa4exx\text{ The particular solution to } \frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=-x \text{ is of the form:}\\ y_{p_{1}}(x)=a_{1}+a_{2} x\\ \text{ The particular solution to }\frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=e^{-2 x} is of the form:\\ y_{p_{2}}(x)=x\left(a_{3} e^{-2 x}\right), where a_{3} e^{-2 x} \text{ was multiplied by} x \text{ to account for }e^{-2 x} in the complementary solution.\\ The particular solution to \frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=e^{-x} is of the form:\\ y_{p_{3}}(x)=x\left(a_{4} e^{-x}\right), where a_{4} e^{-x} was multiplied by x to account for e^{-x} in the complementary solution.\\ Sum y_{p_{1}}(x), y_{p_{2}}(x), and y_{p_{3}}(x) to obtain y_{p}(x) :\\ y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)+y_{p_{3}}(x)=a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\\ Solve for the unknown constants a_{1}, a_{2}, a_{3}, and a_{4} :\\ Compute \frac{d y_{p}(x)}{d x}:\\ \frac{d y_{p}(x)}{d x}=\frac{d}{d x}\left(a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\right)\\ =a_{2}+a_{3} e^{-2 x}-2 a_{3} e^{-2 x} x+a_{4} e^{-x}-a_{4} e^{-x} x


Computed2yp(x)dx2:d2yp(x)dx2=d2dx2(a1+a2x+a3e2xx+a4exx)=a3(4e2x+4e2xx)+a4(2ex+exx)Substitutetheparticularsolutionyp(x)intothedifferentialequation:d2yp(x)dx2+3dyp(x)dx+2yp(x)=ex+e2xxa3(4e2x+4e2xx)+a4(2ex+exx)+3(a2+a3e2x2a3e2xx+a4exa4exx)+2(a1+a2x+a3e2xx+a4exx)=ex+e2xxSimplify:2a1+3a2a3e2x+a4ex+2a2x=e2x+exxEquatethecoefficientsof1onbothsidesoftheequation:2a1+3a2=0Equatethecoefficientsofe2xonbothsidesoftheequation:a3=1Compute \frac{d^{2} y_{p}(x)}{d x^{2}}:\\ \frac{d^{2} y_{p}(x)}{d x^{2}}=\frac{d^{2}}{d x^{2}}\left(a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\right)\\ =a_{3}\left(-4 e^{-2 x}+4 e^{-2 x} x\right)+a_{4}\left(-2 e^{-x}+e^{-x} x\right)\\ Substitute the particular solution y_{p}(x) into the differential equation:\\ \frac{d^{2} y_{p}(x)}{d x^{2}}+3 \frac{d y_{p}(x)}{d x}+2 y_{p}(x)=e^{-x}+e^{-2 x}-x\\ a_{3}\left(-4 e^{-2 x}+4 e^{-2 x} x\right)+a_{4}\left(-2 e^{-x}+e^{-x} x\right)+ 3\left(a_{2}+a_{3} e^{-2 x}-2 a_{3} e^{-2 x} x+a_{4} e^{-x}-a_{4} e^{-x} x\right)+ 2\left(a_{1}+a_{2} x+a_{3} e^{-2 x} x+a_{4} e^{-x} x\right)=e^{-x}+e^{-2 x}-x\\ Simplify:\\ 2 a_{1}+3 a_{2}-a_{3} e^{-2 x}+a_{4} e^{-x}+2 a_{2} x=e^{-2 x}+e^{-x}-x\\ Equate the coefficients of 1 on both sides of the equation:\\ 2 a_{1}+3 a_{2}=0\\ Equate the coefficients of e^{-2 x} on both sides of the equation:\\ -a_{3}=1


Equatethecoefficientsofexonbothsidesoftheequation:a4=1Equatethecoefficientsofxonbothsidesoftheequation:2a2=1Solvethesystem:a1=34a2=12a3=1a4=1Substitutea1,a2,a3, and a4intoyp(x)=a1+xa2+e2xxa3+exxa4:yp(x)=x2+exxe2xx+34Thegeneralsolutionis:y(x)=yc(x)+yp(x)=x2+exxe2xx+c1e2x+c2ex+34Equate the coefficients of e^{-x} on both sides of the equation:\\ a_{4}=1\\ Equate the coefficients of x on both sides of the equation:\\ 2 a_{2}=-1\\ Solve the system:\\ a_{1}=\frac{3}{4}\\ a_{2}=-\frac{1}{2}\\ a_{3}=-1\\ a_{4}=1\\ Substitute a_{1}, a_{2}, a_{3}, \text{ and }a_{4} into y_{p}(x)=a_{1}+x a_{2}+e^{-2 x} x a_{3}+e^{-x} x a_{4} :\\ y_{p}(x)=-\frac{x}{2}+e^{-x} x-e^{-2 x} x+\frac{3}{4}\\ The general solution is:\\ y(x)=y_{\mathrm{c}}(x)+y_{p}(x)=-\frac{x}{2}+e^{-x} x-e^{-2 x} x+c_{1} e^{-2 x}+c_{2} e^{-x}+\frac{3}{4}


which is the required answer


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment