Answer to Question #199969 in Differential Equations for sania khan

Question #199969

solve undetermined coefficient y''+y=2x+3ex

1
Expert's answer
2021-06-17T09:48:09-0400

"y'' +y=2x+3e^x"

1)"y''+y=0"

"k^2 +1=0"

"k_1 = i, k_2=-i"

"y=C_1\\cos(x)+C_2\\sin(x)"

"k_1+ik_2=i+1\\not= k_1\\not= k_2"

"y=e^{k_1}A_n(x)=Ae^{i}"

2)"y''+y=2x+3e^x"

"y=Ae^x+Bx"

"y'= Ae^x+B"

"y'' = Ae^x"

"y'' + y' = Ae^x+Ae^x+Bx=2x+3e^x"

"\\begin{cases}\n2A=3=>A=3\/2\\\\\nB=2\n\\end{cases}"

"y=C_1\\cos(x) +C_2\\sin(x)+\\dfrac{3}{2}e^x+2x"

Checking:

"y'' = -C_1\\cos(x) - C_2\\sin(x)+\\dfrac{3}{2}e^x"

"y'' + y = -C_1\\cos(x) - C_2\\sin(x)+\\dfrac{3}{2}e^x+C_1\\cos(x) +C_2\\sin(x)+\\dfrac{3}{2}e^x+2x=3e^x+2x"

Answer:

"y=C_1\\cos(x) +C_2\\sin(x)+\\dfrac{3}{2}e^x+2x"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS