(D² - 2DD' + D'²)z = x²y²ex+y
(D−D′)2z=0(D-D')^2z=0(D−D′)2z=0
General solution:
C.F+P.I
C.F.:
ϕ1(y+x)+xϕ2(y+x)\phi_1(y+x)+x\phi_2(y+x)ϕ1(y+x)+xϕ2(y+x)
P.I.:
1(D−D′)(D−D′)(x²y²ex+y)\frac{1}{(D-D')(D-D')}(x²y²e^x+y)(D−D′)(D−D′)1(x²y²ex+y)
1D−D′(x²y²ex+y)=∫(x²y²ex+y)dx=y2(x2−2x+2)ex+xy\frac{1}{D-D'}(x²y²e^x+y)=\int(x²y²e^x+y)dx=y^2(x^2-2x+2)e^x+xyD−D′1(x²y²ex+y)=∫(x²y²ex+y)dx=y2(x2−2x+2)ex+xy
1D−D′(y2(x2−2x+2)ex+xy)=∫(y2(x2−2x+2)ex+xy)dx=\frac{1}{D-D'}(y^2(x^2-2x+2)e^x+xy)=\int(y^2(x^2-2x+2)e^x+xy)dx=D−D′1(y2(x2−2x+2)ex+xy)=∫(y2(x2−2x+2)ex+xy)dx=
=y2(x2−4x+6)ex+x2y/2=y^2(x^2-4x+6)e^x+x^2y/2=y2(x2−4x+6)ex+x2y/2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment