Question #199687

(D2-D'2-3D+3D')z=xy+7


1
Expert's answer
2021-05-31T06:48:08-0400

Rewriting the given equation :

(DD)(D+D3)=xy+7(D-D')(D+D'-3)=xy+7

comparing this with standard equation

(Dm1Dα1)(Dm2Dα2)z=F(x,y)(D-m_1D'-\alpha_1)(D-m_2D'-\alpha_2)z=F(x,y)


m1=1;        m2=1α1=0;         α2=3m_1 = 1;\space\space\space\space\space\space\space\space m_2 = – 1 \\ \alpha_1 = 0; \space\space\space\space\space\space\space\space\space \alpha_2 = 3


Complimentary function CF =eα1xΦ1(y+m1x)+eα2xΦ2(y+m2x)=e^{\alpha_1x}\Phi_1(y+m_1x)+e^{\alpha_2 x}\Phi_2(y+m_2 x)

=e0xΦ1(y+x)+e3xΦ2(yx)=e^{0x}\Phi_1(y+x)+e^{3 x}\Phi_2(y-x)

=Φ1(y+x)+e3xΦ2(yx)=\Phi_1(y+x)+e^{3 x}\Phi_2(y-x)


Now Particular Integrals corresponding to xyxy and 77 are as follows:

P.I.1 =1(DD)(D+D3)xy=\dfrac{1}{(D-D')(D+D'-3)}xy

Taking 3D3D common from the denominator

=13D(1DD)(1D3D3)xy=\dfrac{1}{-3D\bigg(1-\dfrac{D'}{D}\bigg)\bigg(1-\dfrac{D}{3}-\dfrac{D'}{3}\bigg)}xy

=13D(1DD)1.(1D3D3)1xy=\dfrac{-1}{3D}\bigg(1-\dfrac{D'}{D}\bigg)^{-1}.\bigg(1-\dfrac{D}{3}-\dfrac{D'}{3}\bigg)^{-1}xy

Using Binomial expansion (1+x)-1 and solving we get

=13[1D+13+23DD+19D+13D+19DD+DD2+.......]xy=\dfrac{-1}{3}\bigg[\dfrac{1}{D}+\dfrac{1}{3}+\dfrac{2}{3}\dfrac{D}{D'}+\dfrac{1}{9}D+\dfrac{1}{3}D'+\dfrac{1}{9}DD'+\dfrac{D'}{D^2}+.......\bigg]xy


On taking terms of D, D', DD' to the power 1 since in F(x, y), x and y are in power 1 only

P.I.1=13[12x2y+13xy+13x2+19y+13x+19+16x3]=-\dfrac{1}{3}\bigg[\dfrac{1}{2}x^2y+\dfrac{1}{3}xy+\dfrac{1}{3}x^2+\dfrac{1}{9}y+\dfrac{1}{3}x+\dfrac{1}{9}+\dfrac{1}{6}x^3\bigg]


P.I.2=13D(1DD)1.(1D3D3)17=\dfrac{-1}{3D}\bigg(1-\dfrac{D'}{D}\bigg)^{-1}.\bigg(1-\dfrac{D}{3}-\dfrac{D'}{3}\bigg)^{-1}7

=73[1D+13+23DD+19D+13D+19DD+DD2+.......]=\dfrac{-7}{3}\bigg[\dfrac{1}{D}+\dfrac{1}{3}+\dfrac{2}{3}\dfrac{D}{D'}+\dfrac{1}{9}D+\dfrac{1}{3}D'+\dfrac{1}{9}DD'+\dfrac{D'}{D^2}+.......\bigg]

Taking terms whose numerator does not have D or D' as they will be equal to zero

=731D79=\dfrac{-7}{3}\dfrac{1}{D}-\dfrac{7}{9}

=7x379=\dfrac{7x}{3}-\dfrac{7}{9}


Complete Solution, z=C.F+P.I.1+P.I.2z=C.F+P.I._1+P.I._2

z=Φ1(y+x)+e3xΦ2(yx)13[12x2y+13xy+13x2+19y+13x+19+16x3]+7x379z=\Phi_1(y+x)+e^{3 x}\Phi_2(y-x)-\dfrac{1}{3}\bigg[\dfrac{1}{2}x^2y+\dfrac{1}{3}xy+\dfrac{1}{3}x^2+\dfrac{1}{9}y+\dfrac{1}{3}x+\dfrac{1}{9}+\dfrac{1}{6}x^3\bigg]+\dfrac{7x}{3}-\dfrac{7}{9}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS