(D2-D'2-3D+3D')z=xy+7
Rewriting the given equation :
"(D-D')(D+D'-3)=xy+7"
comparing this with standard equation
"(D-m_1D'-\\alpha_1)(D-m_2D'-\\alpha_2)z=F(x,y)"
"m_1 = 1;\\space\\space\\space\\space\\space\\space\\space\\space m_2 = \u2013 1\n\\\\ \\alpha_1 = 0; \\space\\space\\space\\space\\space\\space\\space\\space\\space \\alpha_2 = 3"
Complimentary function CF "=e^{\\alpha_1x}\\Phi_1(y+m_1x)+e^{\\alpha_2 x}\\Phi_2(y+m_2 x)"
"=e^{0x}\\Phi_1(y+x)+e^{3 x}\\Phi_2(y-x)"
"=\\Phi_1(y+x)+e^{3 x}\\Phi_2(y-x)"
Now Particular Integrals corresponding to "xy" and "7" are as follows:
P.I.1 "=\\dfrac{1}{(D-D')(D+D'-3)}xy"
Taking "3D" common from the denominator
"=\\dfrac{1}{-3D\\bigg(1-\\dfrac{D'}{D}\\bigg)\\bigg(1-\\dfrac{D}{3}-\\dfrac{D'}{3}\\bigg)}xy"
"=\\dfrac{-1}{3D}\\bigg(1-\\dfrac{D'}{D}\\bigg)^{-1}.\\bigg(1-\\dfrac{D}{3}-\\dfrac{D'}{3}\\bigg)^{-1}xy"
Using Binomial expansion (1+x)-1 and solving we get
"=\\dfrac{-1}{3}\\bigg[\\dfrac{1}{D}+\\dfrac{1}{3}+\\dfrac{2}{3}\\dfrac{D}{D'}+\\dfrac{1}{9}D+\\dfrac{1}{3}D'+\\dfrac{1}{9}DD'+\\dfrac{D'}{D^2}+.......\\bigg]xy"
On taking terms of D, D', DD' to the power 1 since in F(x, y), x and y are in power 1 only
P.I.1"=-\\dfrac{1}{3}\\bigg[\\dfrac{1}{2}x^2y+\\dfrac{1}{3}xy+\\dfrac{1}{3}x^2+\\dfrac{1}{9}y+\\dfrac{1}{3}x+\\dfrac{1}{9}+\\dfrac{1}{6}x^3\\bigg]"
P.I.2"=\\dfrac{-1}{3D}\\bigg(1-\\dfrac{D'}{D}\\bigg)^{-1}.\\bigg(1-\\dfrac{D}{3}-\\dfrac{D'}{3}\\bigg)^{-1}7"
"=\\dfrac{-7}{3}\\bigg[\\dfrac{1}{D}+\\dfrac{1}{3}+\\dfrac{2}{3}\\dfrac{D}{D'}+\\dfrac{1}{9}D+\\dfrac{1}{3}D'+\\dfrac{1}{9}DD'+\\dfrac{D'}{D^2}+.......\\bigg]"
Taking terms whose numerator does not have D or D' as they will be equal to zero
"=\\dfrac{-7}{3}\\dfrac{1}{D}-\\dfrac{7}{9}"
"=\\dfrac{7x}{3}-\\dfrac{7}{9}"
Complete Solution, "z=C.F+P.I._1+P.I._2"
"z=\\Phi_1(y+x)+e^{3 x}\\Phi_2(y-x)-\\dfrac{1}{3}\\bigg[\\dfrac{1}{2}x^2y+\\dfrac{1}{3}xy+\\dfrac{1}{3}x^2+\\dfrac{1}{9}y+\\dfrac{1}{3}x+\\dfrac{1}{9}+\\dfrac{1}{6}x^3\\bigg]+\\dfrac{7x}{3}-\\dfrac{7}{9}"
Comments
Leave a comment