Question #199957

solve undetermined coefficient y'' - y' = sinx

1
Expert's answer
2021-05-31T01:59:39-0400

Given equation is -yy=sinx{y^{''}}-y'=sinx ......A)


d2ydx2dydx=sinx\dfrac{d^{2}y}{dx^{2}}-\dfrac{dy}{dx}= sinx


D = ddx\dfrac{d}{dx}


writing the equation in normal form -


(D2D)y=sinx(D^{2}-D)y=sinx


writing in auxiliary form we get ,


auxiliary equation is -


m2m=0m^{2}-m =0


m=0,1


CF can be written as y=C1e0x+C2exy=C_1e^{0x}+C_2e^{x}


y=C1+C2exy=C_1+C_2e^{x}


now , we have to this by undetermined coefficient , for sinxsinx method let the particular solution is y=Acosx+Bsinxy=Acosx+Bsinx


y=Asinx+Bcosxy^{'}=-Asinx+Bcosx


y=AcosxBsinxy{''}=-Acosx-Bsinx


now putting the value of y,yy^{'},y{''} in equation A) , we get -


=AcosxBsinx+AsinxBcosx=sinx=-Acosx-Bsinx +Asinx-Bcosx=sinx


=cosx(AB)=cosx(-A-B) +sinx(B+A)+sinx(-B+A) =sinxsinx


comparing the coefficient of sinx and cosx osinx\ and \ cosx \ on both side of equation -


=AB=0=-A-B=0

=AB=1=A-B=1

on solving we get ,

== B=12B=\dfrac{-1}{2}


=A=12=A=\dfrac{1}{2}


So our particular solution will be -


y=12cosx+12sinxy=\dfrac{1}{2}cos x+\dfrac{1}{2}sinx


now complete solution is given by -


y=CF+PIy=CF+PI


y=y= C1+C2ex+12(cosx+sinx)C_1+C_2e^{x}+\dfrac{1}{2}(cosx+sinx)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS