Solution :-
y'y'''-(y'')^2=(y'')^3
= (dxdy)(dx3d3y)−(dx2d2y)2=(dx2d2y)3
=(dxdy)(dx3d3y)−(dx2d2y)2−(dx2d2y)3=0 ........(1)
manuplating the (1) equation
f(x)⋅dxd[lnf(x)] = dxdy .....(2)
= ∫∫∫F(y)dx
x = log(y)
using the properties and (1) , (2)
y = ex
=∫∫C1exc1.ec1 dx.dx
=∫exc1.ec1c2 dx
answer = y(x)=c1exc1ec1c2+C3
Comments