Question #181880

y'y'''-(y'')^2=(y'')^3


1
Expert's answer
2021-05-07T10:12:23-0400


Solution :-


y'y'''-(y'')^2=(y'')^3


= (dydx)(d3ydx3)(d2ydx2)2=(d2ydx2)3({dy\over dx})({d^3y\over dx^3})-({d^2y\over dx^2})^2=({d^2y\over dx^2})^3



=(dydx)(d3ydx3)(d2ydx2)2(d2ydx2)3=0({dy\over dx})({d^3y\over dx^3})-({d^2y\over dx^2})^2-({d^2y\over dx^2})^3 = 0 ........(1)

manuplating the (1) equation



f(x)ddx[lnf(x)]f\left( x \right) \cdot {\large\frac{d}{{dx}}\normalsize} \left[ {\ln f\left( x \right)} \right] = dydx\frac {dy}{dx} .....(2)



= F(y)dx\intop\intop\intop F(y)dx


x = log(y)

using the properties and (1) , (2)

y = ex


=C1exc1.ec1\intop\intop C_1e^{xc_1}.e^{c_1} dx.dx



=exc1.ec1c2\intop e^{xc_1}.e^{c_1c_2} dx


answer = y(x)=exc1ec1c2c1+C3\boxed{y(x)={e^{xc_1}e^{c_1c_2}\over c_1} + C_3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS