y'y'''-(y'')^2=(y'')^3
Solution :-
y'y'''-(y'')^2=(y'')^3
= "({dy\\over dx})({d^3y\\over dx^3})-({d^2y\\over dx^2})^2=({d^2y\\over dx^2})^3"
="({dy\\over dx})({d^3y\\over dx^3})-({d^2y\\over dx^2})^2-({d^2y\\over dx^2})^3 = 0" ........(1)
manuplating the (1) equation
"f\\left( x \\right) \\cdot {\\large\\frac{d}{{dx}}\\normalsize} \\left[ {\\ln f\\left( x \\right)} \\right]" = "\\frac {dy}{dx}" .....(2)
= "\\intop\\intop\\intop F(y)dx"
x = log(y)
using the properties and (1) , (2)
y = ex
="\\intop\\intop C_1e^{xc_1}.e^{c_1}" dx.dx
="\\intop e^{xc_1}.e^{c_1c_2}" dx
answer = "\\boxed{y(x)={e^{xc_1}e^{c_1c_2}\\over c_1} + C_3}"
Comments
Leave a comment