Question #181270

Give the general solution using determination of

Integrating Factors.

1. (x^2 + y^2 + 1)dx + x(x − 2y)dy = 0

2. y(4x + y)dx − 2((x^2 − y)dy = 0

3. y(y + 2x − 2)dx − 2(x + y)dy = 0

4. y(8x − 9y)dx − 2x(x − 3y)dy = 0

5. y(2x^2 − xy)dx − (x − y)dy = 0

6. 2(2y^2 + 5xy − 2y + 4)dx + x(2x + 2y − 1)dy = 0

7. (2x^2 + 3xy − 2y + 6x)dx + x(x + 2y − 1)dy = 0


1
Expert's answer
2021-05-07T09:00:08-0400

1. (x2+y2+1)dx+x(x2y)dy=0(x^2 + y^2 + 1)dx + x(x − 2y)dy = 0


Integrating factor-

I.F.=1Mdx+Ndy=1x33+xy2+xI.F.=\dfrac{1}{Mdx+Ndy}=\dfrac{1}{\frac{x^3}{3}+xy^2+x}

Given equation is of the form Mdx+Ndy, Integrate M w.r.t. x and integrate only those term which are

free from x-

The solution of the above equation is-


=x33+xy2+x=\dfrac{x^3}{3}+xy^2+x

2. y(4x+y)dx2(x2y)dy=0y(4x + y)dx − 2(x^2 − y)dy = 0


Integrating factor-

I.F.=1Mdx+Ndy=12yx2+xy2+y2I.F.=\dfrac{1}{Mdx+Ndy}=\dfrac{1}{2yx^2+xy^2+y^2}

Given equation is of the form Mdx+Ndy, Integrate M w.r.t. x and integrate only those term which are

free from x-

The solution of the above equation is-


=2yx2+xy+y2=2yx^2+xy+y^2


3. y(y+2x2)dx2(x+y)dy=0y(y + 2x − 2)dx − 2(x + y)dy = 0



Integrating factor-

I.F.=1Mdx+Ndy=1x2+xy22xyy2I.F.=\dfrac{1}{Mdx+Ndy}=\dfrac{1}{x^2+xy^2-2xy-y^2}

Given equation is of the form Mdx+Ndy, Integrate M w.r.t. x and integrate only those term which are

free from x-

The solution of the above equation is-


=x2+xy22xyy2=x^2+xy^2-2xy-y^2



4. y(8x9y)dx2x(x3y)dy=0y(8x − 9y)dx − 2x(x − 3y)dy = 0 4


Integrating factor-

I.F.=1Mdx+Ndy=14x2y9y2x+3xy2I.F.=\dfrac{1}{Mdx+Ndy}=\dfrac{1}{4x^2y-9y^2x+3xy^2}

Given equation is of the form Mdx+Ndy, Integrate M w.r.t. x and integrate only those term which are

free from x-

The solution of the above equation is-


=4x2y9xy2+3xy2=4x^2y-9xy^2+3xy^2




5. y(2x2xy)dx(xy)dy=0y(2x^2 − xy)dx − (x − y)dy = 0


Integrating factor-

I.F.=1Mdx+Ndy=12x3y3y2x22+y22I.F.=\dfrac{1}{Mdx+Ndy}=\dfrac{1}{\frac{2x^3y}{3}-\frac{y^2x^2}{2}+\frac{y^2}{2}}

Given equation is of the form Mdx+Ndy, Integrate M w.r.t. x and integrate only those term which are

free from x-

The solution of the above equation is-


=2x3y3y2x22+y22=\dfrac{2x^3y}{3}-\dfrac{y^2x^2}{2}+\dfrac{y^2}{2}


6. 2(2y2+5xy2y+4)dx+x(2x+2y1)dy=02(2y^2 + 5xy − 2y + 4)dx + x(2x + 2y − 1)dy = 0


Integrating factor-

I.F.=1Mdx+Ndy=14y2x+5x2y4yx+8xI.F.=\dfrac{1}{Mdx+Ndy}=\dfrac{1}{4y^2x+5x^2y-4yx+8x}

Given equation is of the form Mdx+Ndy, Integrate M w.r.t. x and integrate only those term which are

free from x-

The solution of the above equation is-


=4y2x+5x2y4yx+8x=4y^2x+5x^2y-4yx+8x


7. (2x2+3xy2y+6x)dx+x(x+2y1)dy=0(2x^2 + 3xy − 2y + 6x)dx + x(x + 2y − 1)dy = 0


Integrating factor-

I.F.=1Mdx+Ndy=12x33+3x2y22yxI.F.=\dfrac{1}{Mdx+Ndy}=\dfrac{1}{\frac{2x^3}{3}+\frac{3x^2y}{2}-2yx}

Given equation is of the form Mdx+Ndy, Integrate M w.r.t. x and integrate only those term which are

free from x-

The solution of the above equation is-


=2x33+3x2y22y=\dfrac{2x^3}{3}+\dfrac{3x^2y}{2}-2y



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS