Question #181062

2e^-x + e^y = 3^x-y at 0,0


1
Expert's answer
2021-04-15T07:34:01-0400


Given,

2ex+ey=3xy2e^{-x} + e^y = 3^{x-y}


Differentiate with respect to x-


2ex+eydydx=3xy[1dydx]-2e^{-x}+e^y\dfrac{dy}{dx}=3^{x-y}[1-\dfrac{dy}{dx}]


then Rearranging the equation and we get-


dydx=2ex+3xyey+3xy\dfrac{dy}{dx}=\dfrac{2e^{-x}+3^{x-y}}{e^y+3^{x-y}}


dydx(0,0)=2e0+30e0+30=2+11+1=32\dfrac{dy}{dx}_{(0,0)}=\dfrac{2e^0+3^0}{e^0+3^0}=\dfrac{2+1}{1+1}=\dfrac{3}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS