2e^-x + e^y = 3^x-y at 0,0
Given,
"2e^{-x} + e^y = 3^{x-y}"
Differentiate with respect to x-
"-2e^{-x}+e^y\\dfrac{dy}{dx}=3^{x-y}[1-\\dfrac{dy}{dx}]"
then Rearranging the equation and we get-
"\\dfrac{dy}{dx}=\\dfrac{2e^{-x}+3^{x-y}}{e^y+3^{x-y}}"
"\\dfrac{dy}{dx}_{(0,0)}=\\dfrac{2e^0+3^0}{e^0+3^0}=\\dfrac{2+1}{1+1}=\\dfrac{3}{2}"
Comments
Leave a comment