2e^-x + e^y = 3^x-y at 0,0
Given,
2e−x+ey=3x−y2e^{-x} + e^y = 3^{x-y}2e−x+ey=3x−y
Differentiate with respect to x-
−2e−x+eydydx=3x−y[1−dydx]-2e^{-x}+e^y\dfrac{dy}{dx}=3^{x-y}[1-\dfrac{dy}{dx}]−2e−x+eydxdy=3x−y[1−dxdy]
then Rearranging the equation and we get-
dydx=2e−x+3x−yey+3x−y\dfrac{dy}{dx}=\dfrac{2e^{-x}+3^{x-y}}{e^y+3^{x-y}}dxdy=ey+3x−y2e−x+3x−y
dydx(0,0)=2e0+30e0+30=2+11+1=32\dfrac{dy}{dx}_{(0,0)}=\dfrac{2e^0+3^0}{e^0+3^0}=\dfrac{2+1}{1+1}=\dfrac{3}{2}dxdy(0,0)=e0+302e0+30=1+12+1=23
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments