The equation
(x−y)p−(x−y+z)q=z is a Lagrange linear PDE of the form:
Pp+Qq=R where:
P=x−yQ=−(x−y+z)R=z
The auxiliary equation is of the form
Pdx=Qdy=zdz Thus, from the given equation, we have:
x−ydx=−(x−y+z)dy=zdz⋯(i) Solving equation (i) we get:
x−y+[−(x−y+z)]+zdx+dy+dz=k(say)x−y−(x−y+z)+zdx+dy+dz=kx−y−x+y−z+zdx+dy+dz=k0dx+dy+dz=k⟹dx+dy+dz=0 Integrating through, we get:
∫dx+∫dy+∫dz=∫0x+y+z=c this implies that:
c1=x+y+z
From equation (i), we can have:
x−y−(x−y−z)dx+dy=zdzx−y−x+y+zdx+dy=zdzzdx+dy=zdz⟹dx+dy=dz Integrating through, we get:
∫dx+∫dy=∫dzx+y=z+c2 This implies that:
c2=x+y−z
The general solution is thus:
ϕ(c1,c2)=0⟹ϕ(x+y+z,x+y−z)=0
Comments