Question #181334

(x-y)p-(x-y+z)q=z


1
Expert's answer
2021-05-02T16:01:24-0400

The equation

(xy)p(xy+z)q=z(x-y)p-(x-y+z)q=z

is a Lagrange linear PDE of the form:


Pp+Qq=RPp+Qq=R

where:

P=xyQ=(xy+z)R=zP=x-y\\ Q=-(x-y+z)\\ R= z


The auxiliary equation is of the form


dxP=dyQ=dzz\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{z}

Thus, from the given equation, we have:


dxxy=dy(xy+z)=dzz(i)\frac{dx}{x-y}= \frac{dy}{-(x-y+z)}=\frac{dz}{z} \qquad \cdots (i)

Solving equation (i) we get:


dx+dy+dzxy+[(xy+z)]+z=k(say)dx+dy+dzxy(xy+z)+z=kdx+dy+dzxyx+yz+z=kdx+dy+dz0=k    dx+dy+dz=0\frac{dx+dy+dz}{x-y+[-(x-y+z)]+z} = k \qquad \text{(say)}\\ \frac{dx+dy+dz}{x-y-(x-y+z)+z} = k\\ \frac{dx+dy+dz}{x-y-x+y-z+z} = k\\ \frac{dx+dy+dz}{0} = k\\ \implies dx+dy+dz =0

Integrating through, we get:


dx+dy+dz=0x+y+z=c\int dx+\int dy+\int dz = \int 0\\ x+y+z= c

this implies that:


c1=x+y+z\bold{c_1 = x+y+z}

From equation (i), we can have:


dx+dyxy(xyz)=dzzdx+dyxyx+y+z=dzzdx+dyz=dzz    dx+dy=dz\frac{dx+dy}{x-y-(x-y-z)}=\frac{dz}{z}\\ \frac{dx+dy}{x-y-x+y+z}=\frac{dz}{z}\\ \frac{dx+dy}{z}=\frac{dz}{z}\\ \implies dx+dy=dz

Integrating through, we get:


dx+dy=dzx+y=z+c2\int dx + \int dy = \int dz\\ x+y=z+c_2

This implies that:


c2=x+yz\bold{c_2 = x+y-z}


The general solution is thus:


ϕ(c1,c2)=0    ϕ(x+y+z  ,x+yz)=0\phi(c_1,c_2) =0 \\\implies \phi(x+y+z\;,\quad x+y-z) =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS