d²y/d²x+2dy/dx+10y=0
"\\frac{d^{2}y}{dx}+2\\frac{dy}{dx}+10y=0"
Let "y=e^{mx}"
Then "\\frac{dy}{dx}=me^{mx}" and "\\frac{d^{2}y}{dx^{2}}=m^{2}e^{mx}"
Therefore we get "(m^{2}+2m+10)e^{mx}=0"
As "e^{mx}\\neq 0," we have "(m^{2}+2m+10)=0"
i.e., "m=\\frac{-2\\pm \\sqrt{ 4-40}}{2}"
"=\\frac{-2\\pm i6}{2}"
"=-1\\pm i3"
Therefore the solution becomes "y=e^{-1}(c_{1} Cos 3x+c_{2} Sin 3x)" where "c_{1},c_{2}" are constants.
Comments
Leave a comment