d²y/d²x+2dy/dx+10y=0
d2ydx+2dydx+10y=0\frac{d^{2}y}{dx}+2\frac{dy}{dx}+10y=0dxd2y+2dxdy+10y=0
Let y=emxy=e^{mx}y=emx
Then dydx=memx\frac{dy}{dx}=me^{mx}dxdy=memx and d2ydx2=m2emx\frac{d^{2}y}{dx^{2}}=m^{2}e^{mx}dx2d2y=m2emx
Therefore we get (m2+2m+10)emx=0(m^{2}+2m+10)e^{mx}=0(m2+2m+10)emx=0
As emx≠0,e^{mx}\neq 0,emx=0, we have (m2+2m+10)=0(m^{2}+2m+10)=0(m2+2m+10)=0
i.e., m=−2±4−402m=\frac{-2\pm \sqrt{ 4-40}}{2}m=2−2±4−40
=−2±i62=\frac{-2\pm i6}{2}=2−2±i6
=−1±i3=-1\pm i3=−1±i3
Therefore the solution becomes y=e−1(c1Cos3x+c2Sin3x)y=e^{-1}(c_{1} Cos 3x+c_{2} Sin 3x)y=e−1(c1Cos3x+c2Sin3x) where c1,c2c_{1},c_{2}c1,c2 are constants.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment