Question #164164

d^3y/dx^3-3 d^2y/dx^3+ 4 dy/dx -2y=e^x+cosx


1
Expert's answer
2021-02-16T13:53:22-0500

Solution.

d3ydx33d2ydx2+4dydx2y=ex+cosx,\frac{d^3y}{dx^3}-3\frac{d^2y}{dx^2}+4\frac{dy}{dx}-2y=e^x+\cos⁡{x},

or


y3y+4y2y=ex+cosx.y'''-3y''+4y'-2y=e^x+\cos{x}.


This is a linear differential equation of the third-order with constant coefficients. The general solution of this equation is found as the sum of the general solution y~\tilde{y} of the corresponding homogeneous equation and some particular integral solution yy_* of the inhomogeneous equation: y=y~+y.y=\tilde{y}+y_*.

Сompose and solve the characteristic equation:


λ33λ2+4λ2=0,(λ1)(λ22λ+2)=0,λ1=1,or λ22λ+2=0, λ2=1+i, λ3=1i.\lambda^3-3\lambda^2+4\lambda-2=0, \newline(\lambda-1)(\lambda^2-2\lambda+2)=0, \newline \lambda_1=1, \text{or } \lambda^2-2\lambda+2=0, \newline \text{ } \lambda_2=1+i, \text{ } \lambda_3=1-i.


Therefore, y~=C1eλ1x+C2eaxcosbx+C3eaxsinbx,\tilde{y}=C_1e^{\lambda_1x}+C_2e^{ax}\cos{bx}+C_3e^{ax}\sin{bx},

where aa is a real part, and bb is an imaginary part of complex numbers λ2 and λ3.\lambda_2 \text{ and } \lambda_3. So,


y~=C1ex+C2excosx+C3exsinx.\newline \tilde{y}=C_1e^x+C_2e^x\cos{x}+C_3e^x\sin{x}.

The particular integral solution yy_* is writte in the form:


y=y1+y2.y_∗=y_1+y_2​.

Since the right-hand side contains a cosx\cos{x} , we look for a particular integral solution y1y_1 ​in the form:


y1=Acosx+Bsinx.y_1=A\cos{x}+B\sin{x}.

Using the method of undetermined coefficients we find that A=110A=\frac{1}{10} and B=310.B=\frac{3}{10}. So, y1=110cosx+310sinx.y_1=\frac{1}{10}\cos{x}+\frac{3}{10}\sin{x}.

Since the right-hand side also contains a exe^{x} and 1 is characteristic number, we find a particular integral solution y2y_2 ​in the form:


y2=Cxex.y_2=Cxe^{x}.

Using the method of undetermined coefficients we find that C=1.C=1.

Therefore, y2=xex.y_2=xe^{x}.

As follows, the particular integral solution of d3ydx33d2ydx2+4dydx2y=ex+cosx,\frac{d^3y}{dx^3}-3\frac{d^2y}{dx^2}+4\frac{dy}{dx}-2y=e^x+\cos⁡{x}, is


y=110cosx+310sinx+xex,y_*=\frac{1}{10}\cos{x}+\frac{3}{10}\sin{x}+xe^{x},

and the general solution of the same equation is


y=C1ex+C2excosx+C3exsinx+xex+110cosx+310sinx.y=C_1e^x+C_2e^x\cos{x}+C_3e^x\sin{x}+xe^x+\frac{1}{10}\cos{x}+\frac{3}{10}\sin{x}.

Answer.

y=C1ex+C2excosx+C3exsinx+xex+110cosx+310sinx.y=C_1e^x+C_2e^x\cos{x}+C_3e^x\sin{x}+xe^x+\frac{1}{10}\cos{x}+\frac{3}{10}\sin{x}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS