Given: y 1 2 d y d x + y 3 2 = 1 y^{\frac{1}{2}}\frac{dy}{dx}+y^{\frac{3}{2}}=1 y 2 1 d x d y + y 2 3 = 1
Require to solve the given differential equation.
Now y 1 2 d y d x + y 3 2 = 1 ⇒ y 1 2 d y d x = 1 − y 3 2 y^{\frac{1}{2}}\frac{dy}{dx}+y^{\frac{3}{2}}=1\Rightarrow y^{\frac{1}{2}}\frac{dy}{dx}=1-y^{\frac{3}{2}} y 2 1 d x d y + y 2 3 = 1 ⇒ y 2 1 d x d y = 1 − y 2 3
⇒ d y d x = 1 − y 3 2 y 1 2 \Rightarrow \frac{dy}{dx}=\frac{1-y^{\frac{3}{2}}}{y^{\frac{1}{2}}} ⇒ d x d y = y 2 1 1 − y 2 3
By using separation of variables, we get
y 1 / 2 1 − y 3 / 2 d y = d x \frac{y^{1/2}}{1-y^{3/2}}dy=dx 1 − y 3/2 y 1/2 d y = d x
Intetrating on both sides, we get
∫ y 1 / 2 1 − y 3 / 2 d y = ∫ d x \int \frac{y^{1/2}}{1-y^{3/2}}dy=\int dx ∫ 1 − y 3/2 y 1/2 d y = ∫ d x
To evaluate the above integral, let us take the substitution
u = 1 − y 3 / 2 ⇒ d u = [ 0 − 3 2 y 1 / 2 ] d y ⇒ d u = − 3 2 y 1 / 2 d y u=1-y^{3/2}\Rightarrow du=[0-\frac{3}{2}y^{1/2}]dy\Rightarrow du=-\frac{3}{2}y^{1/2}dy u = 1 − y 3/2 ⇒ d u = [ 0 − 2 3 y 1/2 ] d y ⇒ d u = − 2 3 y 1/2 d y
⇒ y 1 / 2 d y = − 2 3 d u \Rightarrow y^{1/2}dy=-\frac{2}{3}du ⇒ y 1/2 d y = − 3 2 d u
Then the integral becomes
∫ − 2 3 d u u = ∫ d x \int \frac{-\frac{2}{3}du}{u}=\int dx ∫ u − 3 2 d u = ∫ d x
− 2 3 l n ∣ u ∣ = x + c -\frac{2}{3}ln\left | u \right |=x+c − 3 2 l n ∣ u ∣ = x + c
Substituting u = 1 − y 3 / 2 u=1-y^{3/2} u = 1 − y 3/2 , we get
− 2 3 l n ∣ 1 − y 3 / 2 ∣ = x + c -\frac{2}{3}ln\left | 1-y^{3/2} \right |=x+c − 3 2 l n ∣ ∣ 1 − y 3/2 ∣ ∣ = x + c
Use the initial condition y ( 0 ) = 4 y(0)=4 y ( 0 ) = 4 to find the value of c.
y ( 0 ) = 4 ⇒ − 2 3 l n ∣ 1 − 4 3 / 2 ∣ = 0 + c ⇒ c = − 2 3 l n ( 7 ) y(0)=4\Rightarrow -\frac{2}{3}ln\left | 1-4^{3/2} \right |=0+c\Rightarrow c=-\frac{2}{3}ln(7) y ( 0 ) = 4 ⇒ − 3 2 l n ∣ ∣ 1 − 4 3/2 ∣ ∣ = 0 + c ⇒ c = − 3 2 l n ( 7 )
Then, solution to the given differential equation is
− 2 3 l n ∣ 1 − y 3 / 2 ∣ = x − 2 3 l n ( 7 ) -\frac{2}{3}ln\left | 1-y^{3/2} \right |=x-\frac{2}{3}ln(7) − 3 2 l n ∣ ∣ 1 − y 3/2 ∣ ∣ = x − 3 2 l n ( 7 )
Therefore general solution is
2 3 l n ∣ 1 − y 3 / 2 7 ∣ = − x \frac{2}{3}ln\left | \frac{1-y^{3/2}}{7} \right |=-x 3 2 l n ∣ ∣ 7 1 − y 3/2 ∣ ∣ = − x
Comments