Question #164073
𝑦^1/2 𝑑𝑦/𝑑𝑥+𝑦3/2=1; 𝑦(0)=4




1
Expert's answer
2021-02-24T12:40:12-0500

Given: y12dydx+y32=1y^{\frac{1}{2}}\frac{dy}{dx}+y^{\frac{3}{2}}=1

Require to solve the given differential equation.

Now y12dydx+y32=1y12dydx=1y32y^{\frac{1}{2}}\frac{dy}{dx}+y^{\frac{3}{2}}=1\Rightarrow y^{\frac{1}{2}}\frac{dy}{dx}=1-y^{\frac{3}{2}}

dydx=1y32y12\Rightarrow \frac{dy}{dx}=\frac{1-y^{\frac{3}{2}}}{y^{\frac{1}{2}}}

By using separation of variables, we get

y1/21y3/2dy=dx\frac{y^{1/2}}{1-y^{3/2}}dy=dx

Intetrating on both sides, we get

y1/21y3/2dy=dx\int \frac{y^{1/2}}{1-y^{3/2}}dy=\int dx

To evaluate the above integral, let us take the substitution

u=1y3/2du=[032y1/2]dydu=32y1/2dyu=1-y^{3/2}\Rightarrow du=[0-\frac{3}{2}y^{1/2}]dy\Rightarrow du=-\frac{3}{2}y^{1/2}dy

y1/2dy=23du\Rightarrow y^{1/2}dy=-\frac{2}{3}du

Then the integral becomes

23duu=dx\int \frac{-\frac{2}{3}du}{u}=\int dx

23lnu=x+c-\frac{2}{3}ln\left | u \right |=x+c

Substituting u=1y3/2u=1-y^{3/2} , we get

23ln1y3/2=x+c-\frac{2}{3}ln\left | 1-y^{3/2} \right |=x+c

Use the initial condition y(0)=4y(0)=4 to find the value of c.

y(0)=423ln143/2=0+cc=23ln(7)y(0)=4\Rightarrow -\frac{2}{3}ln\left | 1-4^{3/2} \right |=0+c\Rightarrow c=-\frac{2}{3}ln(7)

Then, solution to the given differential equation is

23ln1y3/2=x23ln(7)-\frac{2}{3}ln\left | 1-y^{3/2} \right |=x-\frac{2}{3}ln(7)

Therefore general solution is

23ln1y3/27=x\frac{2}{3}ln\left | \frac{1-y^{3/2}}{7} \right |=-x



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS