π¦^1/2 ππ¦/ππ₯+π¦3/2=1; π¦(0)=4
Given: "y^{\\frac{1}{2}}\\frac{dy}{dx}+y^{\\frac{3}{2}}=1"
Require to solve the given differential equation.
Now "y^{\\frac{1}{2}}\\frac{dy}{dx}+y^{\\frac{3}{2}}=1\\Rightarrow y^{\\frac{1}{2}}\\frac{dy}{dx}=1-y^{\\frac{3}{2}}"
"\\Rightarrow \\frac{dy}{dx}=\\frac{1-y^{\\frac{3}{2}}}{y^{\\frac{1}{2}}}"
By using separation of variables, we get
"\\frac{y^{1\/2}}{1-y^{3\/2}}dy=dx"
Intetrating on both sides, we get
"\\int \\frac{y^{1\/2}}{1-y^{3\/2}}dy=\\int dx"
To evaluate the above integral, let us take the substitution
"u=1-y^{3\/2}\\Rightarrow du=[0-\\frac{3}{2}y^{1\/2}]dy\\Rightarrow du=-\\frac{3}{2}y^{1\/2}dy"
"\\Rightarrow y^{1\/2}dy=-\\frac{2}{3}du"
Then the integral becomes
"\\int \\frac{-\\frac{2}{3}du}{u}=\\int dx"
"-\\frac{2}{3}ln\\left | u \\right |=x+c"
Substituting "u=1-y^{3\/2}" , we get
"-\\frac{2}{3}ln\\left | 1-y^{3\/2} \\right |=x+c"
Use the initial condition "y(0)=4" to find the value of c.
"y(0)=4\\Rightarrow -\\frac{2}{3}ln\\left | 1-4^{3\/2} \\right |=0+c\\Rightarrow c=-\\frac{2}{3}ln(7)"
Then, solution to the given differential equation is
"-\\frac{2}{3}ln\\left | 1-y^{3\/2} \\right |=x-\\frac{2}{3}ln(7)"
Therefore general solution is
"\\frac{2}{3}ln\\left | \\frac{1-y^{3\/2}}{7} \\right |=-x"
Comments
Leave a comment