Solution.
x3y3(2ydx+xdy)=5ydx+7xdy.Divide both parts of the equation by dx:
x4y3dxdy+2x3y4−5y−7xdxdy=0,
or x4y3y′+2x3y4−5y−7xy′=0.
Make a replacement
u(x)=xy(x), from here y(x)=xu(x), and y′=xu′(x)−x2u(x).
Substitute the obtained expressions in our equation:
x4x3u3(xu′−x2u)+2x3x4u4−5xu−7x(xu′−x2u)=0,
or u3u′−7u′+xu4+x2u=0.
Divide both parts of the equation by u4+2u and write the equation in the form:
(u3+2)u(u3−7)u′=−x1.Thus we obtain a differential equation with dividing terms. Let's solve it:
(u3+2)udx(u3−7)dxdu=−xdx,(u3+2)udu(u3−7)=−xdx,∫(u3+2)uu3−7du=∫(−x1)dx,∫2(u3+2)9u2du−∫2u7du=∫(−x1)dx,23ln∣u3+2∣−27ln(∣u∣)=−ln∣x∣+C,where C is some constant.
Returning to the replacement we obtain the solution of the given equation:
23ln∣x3y3(x)+2∣−27ln(∣xy(x)∣)=−ln∣x∣+C.Answer.
23ln∣x3y3(x)+2∣−27ln(∣xy(x)∣)=−ln∣x∣+C.
Comments