Question #164120

x3y3(2ydx+ xdy) = (5ydx+7xdy)


1
Expert's answer
2021-02-24T12:47:10-0500

Solution.

x3y3(2ydx+xdy)=5ydx+7xdy.x^3y^3(2ydx+xdy)=5ydx+7xdy.

Divide both parts of the equation by dx:dx:

x4y3dydx+2x3y45y7xdydx=0,x^4y^3\frac{dy}{dx}+2x^3y^4-5y-7x\frac{dy}{dx}=0,

or x4y3y+2x3y45y7xy=0.x^4y^3y'+2x^3y^4-5y-7xy'=0.

Make a replacement

u(x)=xy(x),u(x)=xy(x), from here y(x)=u(x)x,y(x)=\frac{u(x)}{x}, and y=u(x)xu(x)x2.y'=\frac{u'(x)}{x}-\frac{u(x)}{x^2}.

Substitute the obtained expressions in our equation:

x4u3x3(uxux2)+2x3u4x45ux7x(uxux2)=0,x^4\frac{u^3}{x^3}(\frac{u'}{x}-\frac{u}{x^2})+2x^3\frac{u^4}{x^4}-5\frac{u}{x}-7x(\frac{u'}{x}-\frac{u}{x^2})=0,

or u3u7u+u4x+2ux=0.u^3u'-7u'+\frac{u^4}{x}+\frac{2u}{x}=0.

Divide both parts of the equation by u4+2uu^4+2u and write the equation in the form:


(u37)u(u3+2)u=1x.\frac{(u^3-7)u'}{(u^3+2)u}=-\frac{1}{x}.

Thus we obtain a differential equation with dividing terms. Let's solve it:


dx(u37)dudx(u3+2)u=dxx,\frac{dx(u^3-7)\frac{du}{dx}}{(u^3+2)u}=-\frac{dx}{x},du(u37)(u3+2)u=dxx,\frac{du(u^3-7)}{(u^3+2)u}=-\frac{dx}{x},u37(u3+2)udu=(1x)dx,9u22(u3+2)du72udu=(1x)dx,\int\frac{u^3-7}{(u^3+2)u}du=\int(-\frac{1}{x})dx, \newline \int\frac{9u^2}{2(u^3+2)}du-\int\frac{7}{2u}du=\int(-\frac{1}{x})dx,32lnu3+272ln(u)=lnx+C,\frac{3}{2}\ln{|u^3+2|}-\frac{7}{2}\ln(|u|)=-\ln{|x|}+C,

where C is some constant.

Returning to the replacement we obtain the solution of the given equation:


32lnx3y3(x)+272ln(xy(x))=lnx+C.\frac{3}{2}\ln{|x^3y^3(x)+2|}-\frac{7}{2}\ln(|xy(x)|)=-\ln{|x|}+C.

Answer.

32lnx3y3(x)+272ln(xy(x))=lnx+C.\frac{3}{2}\ln{|x^3y^3(x)+2|}-\frac{7}{2}\ln(|xy(x)|)=-\ln{|x|}+C.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS