d^3y/dx^3-3 d^2y/dx^3+ 4 dy/dx -2y=e^x+cosx
Given equation is-
"\\dfrac{d^3y}{dx^3}-3\\dfrac{ d^2y}{dx^3}+ 4 \\dfrac{dy}{dx} -2y=e^x+cosx"
It's auxilary equation is:-
"m^3-3m^2+4m-2=0"
"\\Rightarrow (m-1)(m^2-2m+2)=0"
The roots of the above equation are "1,1\\pm i"
Complimentary function (C.F.) is given by
= "C_1e^x+(C_2cosx+C_3sinx)e^x"
Particular Integral-
"=\\dfrac{e^x}{D^3-3D^2+4D-2}+\\dfrac{cosx}{D^3-3D^2+4D-2}"
"=\\dfrac{xe^x}{3D^2-6D+4}+\\dfrac{cosx}{D.(-1^2)-3(-1^2)+4D-2}"
"=\\dfrac{xe^x}{3-6+4}+\\dfrac{cosx}{3D+1}"
"=\\dfrac{xe^x}{1}+(1+3D)^{-1}cosx"
"=xe^x+(1-3D)cosx"
="xe^x+cosx+3sinx"
Therefore Complete solution is-
"y=C.F.+P.I."
"y=C_1e^x+(C_2cosx+C_3sinx)e^x+xe^x+cosx+3sinx"
Comments
Leave a comment