Question #164160

d^3y/dx^3-3 d^2y/dx^3+ 4 dy/dx -2y=e^x+cosx


1
Expert's answer
2021-02-24T12:42:04-0500

Given equation is-


d3ydx33d2ydx3+4dydx2y=ex+cosx\dfrac{d^3y}{dx^3}-3\dfrac{ d^2y}{dx^3}+ 4 \dfrac{dy}{dx} -2y=e^x+cosx


It's auxilary equation is:-

m33m2+4m2=0m^3-3m^2+4m-2=0

(m1)(m22m+2)=0\Rightarrow (m-1)(m^2-2m+2)=0


The roots of the above equation are 1,1±i1,1\pm i


Complimentary function (C.F.) is given by

= C1ex+(C2cosx+C3sinx)exC_1e^x+(C_2cosx+C_3sinx)e^x

Particular Integral-


=exD33D2+4D2+cosxD33D2+4D2=\dfrac{e^x}{D^3-3D^2+4D-2}+\dfrac{cosx}{D^3-3D^2+4D-2}


=xex3D26D+4+cosxD.(12)3(12)+4D2=\dfrac{xe^x}{3D^2-6D+4}+\dfrac{cosx}{D.(-1^2)-3(-1^2)+4D-2}


=xex36+4+cosx3D+1=\dfrac{xe^x}{3-6+4}+\dfrac{cosx}{3D+1}


=xex1+(1+3D)1cosx=\dfrac{xe^x}{1}+(1+3D)^{-1}cosx


=xex+(13D)cosx=xe^x+(1-3D)cosx


=xex+cosx+3sinxxe^x+cosx+3sinx


Therefore Complete solution is-

y=C.F.+P.I.y=C.F.+P.I.


y=C1ex+(C2cosx+C3sinx)ex+xex+cosx+3sinxy=C_1e^x+(C_2cosx+C_3sinx)e^x+xe^x+cosx+3sinx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS