Question #143365
Find the particular integral of the equation : (D^2-D')z=e^x+y
1
Expert's answer
2020-11-10T13:04:39-0500

Given

F(D,D)=(D2D)z=ex+yF(D,D')=(D^2-D')z=e^{x+y}

Note that F(1,1)=0F(1,1)=0 ,thus Particular solution is given by


P.I=1(D2D)ex+y1    P.I=ex+y1(D+1)2(D+1)1=ex+y1(D2+2DD)1    P.I=ex+y[1D(1D2+2DD)11]=ex+y1D(1)=ex+yyP.I=\frac{1}{(D^2-D')}e^{x+y}\cdot 1\\ \implies P.I=e^{x+y}\frac{1}{(D+1)^2-(D'+1)}1=e^{x+y}\frac{1}{(D^2+2D-D')}1\\ \implies P.I=e^{x+y}\bigg[\frac{1}{-D'}\bigg(1-\frac{D^2+2D}{D'}\bigg)^{-1}\cdot 1\bigg]\\=-e^{x+y}\frac{1}{D'}(1)=-e^{x+y}y

Therefore, P.I=yex+yP.I=-ye^{x+y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS