Given
"F(D,D')=(D^2-D')z=e^{x+y}"Note that "F(1,1)=0" ,thus Particular solution is given by
"P.I=\\frac{1}{(D^2-D')}e^{x+y}\\cdot 1\\\\\n\\implies P.I=e^{x+y}\\frac{1}{(D+1)^2-(D'+1)}1=e^{x+y}\\frac{1}{(D^2+2D-D')}1\\\\\n\\implies P.I=e^{x+y}\\bigg[\\frac{1}{-D'}\\bigg(1-\\frac{D^2+2D}{D'}\\bigg)^{-1}\\cdot 1\\bigg]\\\\=-e^{x+y}\\frac{1}{D'}(1)=-e^{x+y}y" Therefore, "P.I=-ye^{x+y}"
Comments
Leave a comment