Given equation is,
f(x,y,z,p,q)=x(y2+z2×q2)−zy2p=xy2+xz2q2−zy2p
Since, Transformation is, T=2z2
Now,
z=2T
p=∂x∂z=221T−1/2∂x∂T=2T1∂x∂T=2T1P
q=∂y∂z=221T−1/2∂y∂T=2T1∂y∂T=2T1Q
Putting value of z, p and q in the given equation,
xy2+x(2T)(2T1Q)2−2Ty2(2T1P)=0
xy2+x(2T)(2T1Q2)−y2(P)=0
xy2+xQ2−y2P=0
y2(x−P)=−xQ2
Q2y2=(P−x)x
It can written as,
g(Q,y)=f(P,x)
which is the required result.
Comments