S o l u t i o n Solution S o l u t i o n m 3 − 7 m = 0 ; m ( m 2 − 7 ) = 0 ∴ m 1 = 0 , m 2 = 7 C . F = ϕ 1 ( y + m 1 ⋅ x ) + ϕ 2 ( y + m 2 ⋅ x ) + x ϕ 3 ( y + m 2 ⋅ x ) C . F = ϕ 1 ( y + 0 ⋅ x ) + ϕ 2 ( y + ( 7 ) ⋅ x ) + x ϕ 3 ( y + ( 7 ) ⋅ x ) m^3-7m =0;\ m(m^2-7)=0\\
\therefore m_1=0,m_2=\sqrt{7}\\
C.F=\phi_1 (y+m_1 \cdot x)+\phi_2 (y+m_2 \cdot x)+x\ \phi_3 (y+m_2 \cdot x)\\
C.F=\phi_1 (y+0 \cdot x)+\phi_2 (y+(\sqrt{7}) \cdot x)+x\ \phi_3 (y+(\sqrt{7}) \cdot x)\\ m 3 − 7 m = 0 ; m ( m 2 − 7 ) = 0 ∴ m 1 = 0 , m 2 = 7 C . F = ϕ 1 ( y + m 1 ⋅ x ) + ϕ 2 ( y + m 2 ⋅ x ) + x ϕ 3 ( y + m 2 ⋅ x ) C . F = ϕ 1 ( y + 0 ⋅ x ) + ϕ 2 ( y + ( 7 ) ⋅ x ) + x ϕ 3 ( y + ( 7 ) ⋅ x )
P . I = s i n ( x + 2 y ) + e 2 x + y D 3 – 7 D D 2 – 6 D 3 F ( D , D ′ ) = D 3 – 7 D D 2 – 6 D 3 ; W h e r e a = 1 , b = 2 f ( a , b ) = ( 1 , 2 ) = 1 3 − 7 ( 1 ) ( 2 ) 2 − 6 ( 2 ) 3 = 1 − 7 ( 4 ) − 6 ( 8 ) ⟹ − 75 ≠ 0 P.I=\frac{sin(x+2y) + e^{2x}+y}{D³ – 7DD'² –6D'³}\\
F(D,D')=D³ – 7DD'² –6D'³;\ Where\ a=1, b=2\\
f(a,b)=(1,2)=1^3-7(1)(2)^2-6(2)^3=1-7(4)-6(8)\\
\implies-75 \ne0\\ P . I = D 3 –7 D D 2 –6 D 3 s in ( x + 2 y ) + e 2 x + y F ( D , D ′ ) = D 3 –7 D D 2 –6 D 3 ; Wh ere a = 1 , b = 2 f ( a , b ) = ( 1 , 2 ) = 1 3 − 7 ( 1 ) ( 2 ) 2 − 6 ( 2 ) 3 = 1 − 7 ( 4 ) − 6 ( 8 ) ⟹ − 75 = 0
P . I = 1 f ( a , b ) ∫ ∫ s i n v δ v δ v + ∫ ∫ ( e 2 x + y ) δ y δ x ⟹ 1 1 ∫ ∫ − c o s v δ v δ v ⟹ 1 ∫ ∫ − s i n v δ v = c o t v = c o t ( x + 2 y ) a n d ⟹ ∫ ∫ ( e 2 x + y ) δ y δ x = ∫ e 2 x + y ) δ y = e 2 x y + y 2 2 ⟹ y 2 2 x + y 1 2 e 2 x P . I = c o t ( x + 2 y ) + y 2 2 x + y 1 2 e 2 x P.I=\frac{1}{f(a,b)}\intop \intop sin\ v\ \delta v \delta v + \intop \intop (e^{2x}+y)\ \delta y \delta x \\
\implies \frac11\intop \intop -cos\ v\ \delta v \delta v \\
\implies 1\intop \intop -sin\ v\ \delta v =cot\ v= cot(x+2y)\\
and\\
\implies \intop \intop (e^{2x}+y)\ \delta y \delta x =\intop e^{2x}+y)\ \delta y = e^{2x}y+\frac{y^2}{2}\\
\implies \frac{y^2}{2}x+y \frac12 e^{2x}\\
P.I =cot(x+2y)+\frac{y^2}{2}x+y \frac12 e^{2x}\\ P . I = f ( a , b ) 1 ∫∫ s in v δ v δ v + ∫∫ ( e 2 x + y ) δyδ x ⟹ 1 1 ∫∫ − cos v δ v δ v ⟹ 1 ∫∫ − s in v δ v = co t v = co t ( x + 2 y ) an d ⟹ ∫∫ ( e 2 x + y ) δyδ x = ∫ e 2 x + y ) δy = e 2 x y + 2 y 2 ⟹ 2 y 2 x + y 2 1 e 2 x P . I = co t ( x + 2 y ) + 2 y 2 x + y 2 1 e 2 x
General Solution
C . F + P . I = ϕ 1 ( y + 0 ⋅ x ) + ϕ 2 ( y + ( 7 ) ⋅ x ) + x ϕ 3 ( y + ( 7 ) ⋅ x ) + c o t ( x + 2 y ) + y 2 2 x + y 1 2 e 2 x C.F+P.I= \phi_1 (y+0 \cdot x)+\phi_2 (y+(\sqrt{7}) \cdot x)+x\ \phi_3 (y+(\sqrt{7}) \cdot x)+cot(x+2y)+\frac{y^2}{2}x+y \frac12 e^{2x}\\ C . F + P . I = ϕ 1 ( y + 0 ⋅ x ) + ϕ 2 ( y + ( 7 ) ⋅ x ) + x ϕ 3 ( y + ( 7 ) ⋅ x ) + co t ( x + 2 y ) + 2 y 2 x + y 2 1 e 2 x
Comments