Question #143058
solve (D³ – 7DD'² –6D'³)z = sin(x+2y) + e^2x+y
1
Expert's answer
2020-11-09T19:52:19-0500
SolutionSolution

m37m=0; m(m27)=0m1=0,m2=7C.F=ϕ1(y+m1x)+ϕ2(y+m2x)+x ϕ3(y+m2x)C.F=ϕ1(y+0x)+ϕ2(y+(7)x)+x ϕ3(y+(7)x)m^3-7m =0;\ m(m^2-7)=0\\ \therefore m_1=0,m_2=\sqrt{7}\\ C.F=\phi_1 (y+m_1 \cdot x)+\phi_2 (y+m_2 \cdot x)+x\ \phi_3 (y+m_2 \cdot x)\\ C.F=\phi_1 (y+0 \cdot x)+\phi_2 (y+(\sqrt{7}) \cdot x)+x\ \phi_3 (y+(\sqrt{7}) \cdot x)\\

P.I=sin(x+2y)+e2x+yD37DD26D3F(D,D)=D37DD26D3; Where a=1,b=2f(a,b)=(1,2)=137(1)(2)26(2)3=17(4)6(8)    750P.I=\frac{sin(x+2y) + e^{2x}+y}{D³ – 7DD'² –6D'³}\\ F(D,D')=D³ – 7DD'² –6D'³;\ Where\ a=1, b=2\\ f(a,b)=(1,2)=1^3-7(1)(2)^2-6(2)^3=1-7(4)-6(8)\\ \implies-75 \ne0\\

P.I=1f(a,b)sin v δvδv+(e2x+y) δyδx    11cos v δvδv    1sin v δv=cot v=cot(x+2y)and    (e2x+y) δyδx=e2x+y) δy=e2xy+y22    y22x+y12e2xP.I=cot(x+2y)+y22x+y12e2xP.I=\frac{1}{f(a,b)}\intop \intop sin\ v\ \delta v \delta v + \intop \intop (e^{2x}+y)\ \delta y \delta x \\ \implies \frac11\intop \intop -cos\ v\ \delta v \delta v \\ \implies 1\intop \intop -sin\ v\ \delta v =cot\ v= cot(x+2y)\\ and\\ \implies \intop \intop (e^{2x}+y)\ \delta y \delta x =\intop e^{2x}+y)\ \delta y = e^{2x}y+\frac{y^2}{2}\\ \implies \frac{y^2}{2}x+y \frac12 e^{2x}\\ P.I =cot(x+2y)+\frac{y^2}{2}x+y \frac12 e^{2x}\\

General Solution

C.F+P.I=ϕ1(y+0x)+ϕ2(y+(7)x)+x ϕ3(y+(7)x)+cot(x+2y)+y22x+y12e2xC.F+P.I= \phi_1 (y+0 \cdot x)+\phi_2 (y+(\sqrt{7}) \cdot x)+x\ \phi_3 (y+(\sqrt{7}) \cdot x)+cot(x+2y)+\frac{y^2}{2}x+y \frac12 e^{2x}\\




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS