Question #142658
The primitive of the partial differential equation
√p + √q = 2x , is 1/6×(2x-a)^3+a^2y+b
True or false with full explanation
1
Expert's answer
2020-11-08T18:14:22-0500

Truep+q=2xq=2xp=aq=a,q=a22xp=ap=2xap=(2xa)2dz=pdx+qdydz=(2xa)2dx+a2dydz=(2xa)2dx+a2dyz=(2xa)36+a2y+bTherefore, it is true.\displaystyle\textsf{True}\\ \sqrt{p} + \sqrt{q} = 2x\\ \sqrt{q} = 2x - \sqrt{p} = a\\ \sqrt{q} = a, q = a^2\\ 2x - \sqrt{p} = a\\ \sqrt{p} = 2x - a\\ p = (2x - a)^2\\ \mathrm{d}z = p\,\mathrm{d}x + q\,\mathrm{d}y\\ \mathrm{d}z = (2x - a)^2\,\mathrm{d}x + a^2\,\mathrm{d}y\\ \int \,\mathrm{d}z = \int (2x - a)^2\,\mathrm{d}x + \int a^2\,\mathrm{d}y\\ z = \frac{(2x - a)^3}{6} + a^2y + b\\ \textsf{Therefore, it is true.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS