True p + q = 2 x q = 2 x − p = a q = a , q = a 2 2 x − p = a p = 2 x − a p = ( 2 x − a ) 2 d z = p d x + q d y d z = ( 2 x − a ) 2 d x + a 2 d y ∫ d z = ∫ ( 2 x − a ) 2 d x + ∫ a 2 d y z = ( 2 x − a ) 3 6 + a 2 y + b Therefore, it is true. \displaystyle\textsf{True}\\
\sqrt{p} + \sqrt{q} = 2x\\
\sqrt{q} = 2x - \sqrt{p} = a\\
\sqrt{q} = a, q = a^2\\
2x - \sqrt{p} = a\\
\sqrt{p} = 2x - a\\
p = (2x - a)^2\\
\mathrm{d}z = p\,\mathrm{d}x + q\,\mathrm{d}y\\
\mathrm{d}z = (2x - a)^2\,\mathrm{d}x + a^2\,\mathrm{d}y\\
\int \,\mathrm{d}z = \int (2x - a)^2\,\mathrm{d}x + \int a^2\,\mathrm{d}y\\
z = \frac{(2x - a)^3}{6} + a^2y + b\\
\textsf{Therefore, it is true.} True p + q = 2 x q = 2 x − p = a q = a , q = a 2 2 x − p = a p = 2 x − a p = ( 2 x − a ) 2 d z = p d x + q d y d z = ( 2 x − a ) 2 d x + a 2 d y ∫ d z = ∫ ( 2 x − a ) 2 d x + ∫ a 2 d y z = 6 ( 2 x − a ) 3 + a 2 y + b Therefore, it is true.
Comments