Truep+q=2xq=2x−p=aq=a,q=a22x−p=ap=2x−ap=(2x−a)2dz=p dx+q dydz=(2x−a)2 dx+a2 dy∫ dz=∫(2x−a)2 dx+∫a2 dyz=(2x−a)36+a2y+bTherefore, it is true.\displaystyle\textsf{True}\\ \sqrt{p} + \sqrt{q} = 2x\\ \sqrt{q} = 2x - \sqrt{p} = a\\ \sqrt{q} = a, q = a^2\\ 2x - \sqrt{p} = a\\ \sqrt{p} = 2x - a\\ p = (2x - a)^2\\ \mathrm{d}z = p\,\mathrm{d}x + q\,\mathrm{d}y\\ \mathrm{d}z = (2x - a)^2\,\mathrm{d}x + a^2\,\mathrm{d}y\\ \int \,\mathrm{d}z = \int (2x - a)^2\,\mathrm{d}x + \int a^2\,\mathrm{d}y\\ z = \frac{(2x - a)^3}{6} + a^2y + b\\ \textsf{Therefore, it is true.}Truep+q=2xq=2x−p=aq=a,q=a22x−p=ap=2x−ap=(2x−a)2dz=pdx+qdydz=(2x−a)2dx+a2dy∫dz=∫(2x−a)2dx+∫a2dyz=6(2x−a)3+a2y+bTherefore, it is true.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments