Equation y′+p(x)y=q(x)y'+p(x)y=q(x)y′+p(x)y=q(x) has a solution:
y=e−∫p(x)dx(C+∫q(x)e∫p(x)dxdx)y=e^{-\int{p(x)dx}}(C+\int{q(x)}e^{\int{p(x)dx}}dx)y=e−∫p(x)dx(C+∫q(x)e∫p(x)dxdx)
for equation y′−xy=2:y'-xy=2 :y′−xy=2:
p(x)=−x;q(x)=2p(x)=-x; q(x)=2p(x)=−x;q(x)=2
∫p(x)dx=∫(−x)dx=−x22\int{p(x)dx}=\int{(-x)dx}=-\frac{x^2}{2}∫p(x)dx=∫(−x)dx=−2x2
y=ex22(C+∫2e−x22dx)y=e^{\frac{x^2}{2}}(C+\int{2e^{-\frac{x^2}{2}}dx})y=e2x2(C+∫2e−2x2dx) is a solution of the equation.
The integral ∫e−x22dx\int{e^{-\frac{x^2}{2}}dx}∫e−2x2dx is not expressed explicitly.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments