4(3x+y−2)dx−(3x+y)dy=04(3x+y−2)−(3x+y)dxdy=0Substitutev=3x+ydxdv=3+dxdydxdv−3=dxdy⟹4(v−2)−v(dxdv−3)=07v−8−vdxdv=07v−8=vdxdvv7v−8=dxdvdxdv=v7v−8(7v−8)dxvdv=1Integrating both sideswrt.x∫(7v−8)dxvdv⋅dx=∫dx∫7v−8vdvdx=xx=71∫7v−87v−8+8⋅dvx=∫(71+7(v−8)8)dvx=7v+78ln(v−8)+C7x=(3x+y)+8ln(3x+y−8)+C(4x−y)−C=8ln(3x+y−8)e8(4x−y)−C=3x+y−8y=8−3x+e8(4x−y)−Cy=8−3x+Ae8(4x−y),{whereA=e8−C}∴y=8−3x+Ae8(4x−y)is the solution the ODE.
Comments