Solution
Given (2D2D′−3DD′2+D′3)z=0
D′(D2−23DD′+21D′2)z=0D′(D2−21DD′−DD′+21D′2)z=0⟹D′(D(D−21D′)−D′(D−21D))∴(D′(D−D′)(D−21D′))z=0
Then
D′⟹ϕ1(y)(D−D′)⟹ϕ2(y+x)(D−21D′)⟹ϕ3(y+21x)z=ϕ1(y)+ϕ2(y+x)+ϕ3(y+21x)
Answer
z=ϕ1(y)+ϕ2(y+x)+ϕ3(y+21x)
Comments