Solve the following simultaneous differential equations
dx/y^2×(x-y)= dy/-x^2×(x-y)= dz/z×(x^2+y^2)
1
Expert's answer
2020-11-09T20:05:18-0500
y2(x−y)dx=−x2(x−y)dy=z(x2+y2)dzComparing the first two equationsy2(x−y)dx=−x2(x−y)dyy2dx=−x2dy−x2dx=y2dy∫−x2dx=∫y2dy3−x3+C=3y33x3+3y3=Cx3+y3=C,y=3C−x3Comparing the first and last equation, we have;x(C−x3)32−C+x3dx(x2+(C−x3)32)=zdzIntegrating both sides gives a non-standardintegral on the LHS.We can choose(x−y1,x−y1,z1)as our multipliers,x−ydx−x−ydy−zdz=0x−3C−x3dx−3C−y3−ydy=zdzIntegrating both sides, we have integralsthat cannot be expressed as standardintegrals except atC=0.Evaluating atC=0,we have;2xdx−−2ydy=zdz∫2xdx+∫2ydy=∫zdz2lnx+2lny+B=lnz2lnAxy=lnz∴z=Fxyis a solution tothe partial differential equation.WhereC,B,Fare arbitrary constantsTherefore, the solutions to the PDE areϕ(x3+y3,xyz)=0.
Comments