Question #143211
Solve
(D^2+5DD'+5D'^2)z= x.sin(3x-2y)
1
Expert's answer
2020-11-09T20:17:30-0500

Given (D2+5DD+5D2)z=x.sin(3x2y)(D^2+5DD'+5D'^2)z= x.sin(3x-2y)

The auxiliary equation is

m2+5m+5=0    b±b24ac2a=5±524(1)(5)2(1)i.e. m=5,0m^2+5m+5=0 \implies \frac{-b \pm \sqrt{b^2-4ac}}{2a} =\frac{-5 \pm \sqrt{5^2-4(1)(5)}}{2(1)} \\ i.e.\ m=-5,0\\

whence complementary function (C.F.) =

ϕ1(y5x)+ϕ2(y)\phi_1(y-5x)+\phi_2(y)\\

P.I.=1D2+5DD+5D2xsin(3x2y)={D2=9DD=6D=4P.I. = \frac{1}{D^2+5DD'+5D'^2}x \cdot sin(3x-2y)= \begin{cases} D^2=-9 \\ DD'=6 \\ D'=-4 \end{cases}


(i.e., on replacing D2D^2 by a2, DDa^2,\ DD' by ab,D2=b2-ab, D'^2=-b^2 provided φ(a2,ab,b2)0φ(–a2, –ab, –b2) ≠ 0 )

Clearly it is a case of failure as φ(a2,ab,b2)=0.φ(–a2, –ab, –b2) = 0.


Therefore, factorize ϕ(D,D)\phi (D,D') and apply these factors turn by turn

P.I.=1D(D+5D)x sin(3x2y)=1DD+5Dx sin(3x10x2c1)  y5x=c1=1Dx sin(7x2c1)δx=1Dx cos(7x2c1)7+17sin(7x2c1)7=1Dx7cos(3x2y)+149sin(3x2y)=D(x7cos(3x2y)+149sin(3x2y))δx=D(x7cos(3x2c2)+149sin(3x2c2))δx y=c2P.I.=\frac{1}{D(D+5D')}x\ sin (3x-2y)\\ =\frac{1}{D} \intop_{D+5D'}x\ sin (3x-10x-2c_1)\ \therefore\ y-5x=c_1\\ =\frac{1}{D} \intop x\ sin (-7x-2c_1)\delta x =\frac{1}{D} \intop \frac{- x\ cos (-7x-2c_1)}{-7}+\frac{1}{-7}\frac{sin (-7x-2c_1)}{-7}\\ =\frac{1}{D}\frac{x}{7}cos(3x-2y)+\frac{1}{49}sin (3x-2y)\\ = \intop_D(\frac{x}{7}cos(3x-2y)+\frac{1}{49}sin(3x-2y))\delta x\\ = \intop_D(\frac{x}{7}cos(3x-2c_2)+\frac{1}{49}sin(3x-2c_2))\delta x\ \therefore y=c_2\\


= \intop(\frac{x}{7}cos(3x-2c_2)\delta x+\intop\frac{1}{49}sin(3x-2c_2))\delta x\

Letting a=(x7cos(3x2c2)δxa= \intop(\frac{x}{7}cos(3x-2c_2)\delta x and b=\intop\frac{1}{49}sin(3x-2c_2))\delta x\

a=(x7cos(3x2c2)δx=x sin(3x2c2)21+13cos(3x2c2)3a    x21sin(3x2c2)+19cos(3x2c2)b=(149sin(3x2c2)δx=cos(3x2c2)49+13sin(3x2c2)49b    149cos(3x2c2)+1147sin(3x2c2)a+b    x21sin(3x2c2)+19cos(3x2c2)149cos(3x2c2)+1147sin(3x2c2)    7x147sin(3x2c2)+1147sin(3x2c2)+40441cos(3x2c2)P.I.=7x147sin(3x2y)+1147sin(3x2y)+40441cos(3x2y)a= \intop(\frac{x}{7}cos(3x-2c_2)\delta x =\frac{x\ sin(3x-2c_2)}{21}+\frac13 \frac{cos(3x-2c_2)}{3}\\ a\implies \frac{x}{21}sin(3x-2c_2) +\frac{1}{9}cos(3x-2c_2)\\ b= \intop(\frac{1}{49}sin(3x-2c_2)\delta x =\frac{-cos(3x-2c_2)}{49}+\frac13 \frac{sin(3x-2c_2)}{49}\\ b\implies -\frac{1}{49}cos(3x-2c_2) +\frac{1}{147}sin(3x-2c_2)\\ \therefore a+b \implies \frac{x}{21}sin(3x-2c_2) +\frac{1}{9}cos(3x-2c_2)-\frac{1}{49}cos(3x-2c_2) +\frac{1}{147}sin(3x-2c_2)\\ \implies \frac{7x}{147}sin(3x-2c_2)+\frac{1}{147}sin(3x-2c_2) +\frac{40}{441}cos(3x-2c_2)\\ P.I. =\frac{7x}{147}sin(3x-2y)+\frac{1}{147}sin(3x-2y) +\frac{40}{441}cos(3x-2y)\\

\therefore The complete Integral z=C.I.+P.I.z=C.I.+P.I.


Answer

=ϕ1(y5x)+ϕ2(y)+7x147sin(3x2y)+1147sin(3x2y)+40441cos(3x2y)=\phi_1(y-5x)+\phi_2(y)+\frac{7x}{147}sin(3x-2y)+\frac{1}{147}sin(3x-2y) +\frac{40}{441}cos(3x-2y)\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS