Given (D2+5DD′+5D′2)z=x.sin(3x−2y)
The auxiliary equation is
m2+5m+5=0⟹2a−b±b2−4ac=2(1)−5±52−4(1)(5)i.e. m=−5,0
whence complementary function (C.F.) =
ϕ1(y−5x)+ϕ2(y) P.I.=D2+5DD′+5D′21x⋅sin(3x−2y)=⎩⎨⎧D2=−9DD′=6D′=−4
(i.e., on replacing D2 by a2, DD′ by −ab,D′2=−b2 provided φ(–a2,–ab,–b2)=0 )
Clearly it is a case of failure as φ(–a2,–ab,–b2)=0.
Therefore, factorize ϕ(D,D′) and apply these factors turn by turn
P.I.=D(D+5D′)1x sin(3x−2y)=D1∫D+5D′x sin(3x−10x−2c1) ∴ y−5x=c1=D1∫x sin(−7x−2c1)δx=D1∫−7−x cos(−7x−2c1)+−71−7sin(−7x−2c1)=D17xcos(3x−2y)+491sin(3x−2y)=∫D(7xcos(3x−2y)+491sin(3x−2y))δx=∫D(7xcos(3x−2c2)+491sin(3x−2c2))δx ∴y=c2
= \intop(\frac{x}{7}cos(3x-2c_2)\delta x+\intop\frac{1}{49}sin(3x-2c_2))\delta x\
Letting a=∫(7xcos(3x−2c2)δx and b=\intop\frac{1}{49}sin(3x-2c_2))\delta x\
a=∫(7xcos(3x−2c2)δx=21x sin(3x−2c2)+313cos(3x−2c2)a⟹21xsin(3x−2c2)+91cos(3x−2c2)b=∫(491sin(3x−2c2)δx=49−cos(3x−2c2)+3149sin(3x−2c2)b⟹−491cos(3x−2c2)+1471sin(3x−2c2)∴a+b⟹21xsin(3x−2c2)+91cos(3x−2c2)−491cos(3x−2c2)+1471sin(3x−2c2)⟹1477xsin(3x−2c2)+1471sin(3x−2c2)+44140cos(3x−2c2)P.I.=1477xsin(3x−2y)+1471sin(3x−2y)+44140cos(3x−2y)
∴ The complete Integral z=C.I.+P.I.
Answer
=ϕ1(y−5x)+ϕ2(y)+1477xsin(3x−2y)+1471sin(3x−2y)+44140cos(3x−2y)
Comments