Given,
L=2H, R=40"\\Omega" ,C=0.0025F
V=12 volt, initial charge "q_o=" 0.001Columb
The classical differential equation of RLC series circuit is given by
"L\\dfrac{d^2Q}{dt^2}+R\\dfrac{dq}{dt}+\\dfrac{Q}{C}=V"
"\\to" "2\\dfrac{d^2Q}{dt^2}+40\\dfrac{dq}{dt}+\\dfrac{Q}{0.0025}=12"
"2\\dfrac{d^2Q}{dt^2}+40\\dfrac{dq}{dt}+400Q=12"
or
"\\to \\dfrac{d^2Q}{dt^2}+20\\dfrac{dq}{dt}+200Q=6~~~~~-(1)"
Calculation of complementary part
Auxiliary equation is given by,
"m^2+20m+200=0"
"m=\\dfrac{-20\\pm \\sqrt{400-800}}{2}"
="\\dfrac{-20\\pm20i}{2}"
"=-10\\pm10i"
Complementary function is given by,
C.f.="e^{-10t}(c_1cos10t+c_2sin10t)~~~~~~~~-(1)"
Calculation of particular integral
Particular integral=A
"Q=A , Q'=0,Q''=0"
Put these value in (1)
(1)"\\to 0+0+200A=6"
"\\therefore A=\\dfrac{6}{200}"
="0.03"
Complete solution
C.S.=C.F.+P.I.
Q ="e^{-10t}(c_1cos10t+c_2sin10t)+0.03"
At t=0 ,q=0.001
"0.001=1(c_1cos0+c_2sin0)+0.03"
"c_1=0.001-0.03" ="0.029"
At t=0, current I=0
So "\\dfrac{dq}{dt}=0"
"\\to e^{-10t}(10c_2cost-10c_1sint)\n-10e^{-10t}(c_1cos10t+c_2sin10t)" =0
"\\to10c_2-10c_1=0"
"\\to c_2=c_1=0.029"
Therefore charge Q is
"Q=-0.029e^{-10t}(cos10t+sin10t)+0.03"
Current
I="\\dfrac{dq}{dt}"
="-0.029(e^{-10t}(10cos10t-10sin10t)-10e^{-10t}(sin10t+cos10t))"
"=-0.029(e^{-10t}(10cos10t-10sin10t-10sin10t-10cos10t)"
="-0.029(e^{-10t}(-20sin10t))"
"=0.58e^{-10t}sin10t"
Hence current I="0.58e^{-10t}sin10t"
Comments
Leave a comment