Question #140080
(y−(cosx)^2)dx+cosxdy=0
1
Expert's answer
2020-10-26T16:37:41-0400

Given:  (y(cos  x)2)dx+cos  x  dy=0\mathbf{Given:\;(y-(cos\;x)^2)dx+cos\;x\;dy=0}


We  have  :(ycos2x)cos  x+dydx=0\mathbf{We\;have\;:\dfrac{(y-cos^2x)}{cos\;x}+\dfrac{dy}{dx}=0}


    dydx+ycos  x=cos  x\implies \mathbf{\dfrac{dy}{dx}+\dfrac{y}{cos\;x}=cos\;x}\\ \\


  This  is  in  the  form  of  Bernoullis  equation,so  Integrating  factor=I.F.=exp(1cos  xdx)=exp(sec  xdx)\therefore\;\mathbf{This\;is\;in\;the\;form\;of\;Bernoulli's\;equation,so\;-}\\ \\ \mathbf{Integrating\;factor=I.F.=exp\left(\int\dfrac{1}{cos\;x}dx\right)=exp\left(\int{sec\;x}dx\right)}

=exp(lnsec  x+tan  x)=\mathbf{exp(ln|sec\;x+tan\;x|)}

=sec  x+tan  x=|\mathbf{sec\;x+tan\;x}|


Solution  is\therefore\mathbf{Solution\;is-}


y(I.F.)=Q(x)(I.F.)dx+C,  (here  Q(x)=cos  x)\mathbf{y(I.F.)=\int Q(x)(I.F.)dx+C,\;(here\;Q(x)=cos\;x)}


So,  we  have  solution\mathbf{So,\;we\;have\;solution-}


y(sec  x+tan  x)=cos  x(sec  x+tan  x)dx+C\mathbf{y(|sec\;x+tan\;x|)=\int cos\;x(|sec\;x+tan\;x|)dx+C}


    y(sec  x+tan  x)=(1+sin  x)dx+C\implies \mathbf{y(|sec\;x+tan\;x|)=\int (1+sin\;x)dx+C}


    y(sec  x+tan  x)=xcos  x+C        ............Ans.\implies \mathbf{y(|sec\;x+tan\;x|)= x-cos\;x+C\;\;\;\;............Ans.}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS